1. COMPANY: Represent name of company.
2. NSE_CODE: Represent code of company from National Stock Exchange.
3. BSE_CODE: Represent code of company from Bombay Stock Exchange.
4. SECTOR: Represent that in which field company works.
5. MARKET_CAP: Market cap or market capitalization refers to the total value of all a company's shares of stock. It is calculated by multiplying the price of a stock by its total number of outstanding shares.
6. CURRENT_PRICE: The current price is the most recent selling price of a stock, currency, commodity, or precious metal that is traded on an exchange and is the most reliable indicator of that security's present value.
7. DOWN_FROM_52w_HIGH: The 52-week high is the highest price at which a security, such as a stock, has traded during the time period that equates to one year.
8. UP_FROM_52w_LOW: The 52-week high is the lowest price at which a security, such as a stock, has traded during the time period that equates to one year.
9. DEBT: It's the sum of loan and short term debt taken by company.
10. DIV_YIELD: It measures the amount of cash dividends distributed to equity shareholders relative to the market value as per share
11. BOOK_VALUE: The book value of a stock is theoretically the amount of money that would be paid to shareholders if the company was liquidated and paid off all of its liabilities
12. PROMOTER_HOLDING: A promoter, as the name suggests, is an individual or an organization that helps promote the investment activity of a company. in most cases, promoters are paid in the company's stocks, or they directly invest in them. This gives the promoters a significant stake in the company. Such a stake is known as promoter's holding. Often, they also have voting rights, which gives them an influential say in the company's management.
13. HOLDING_PLEDGED:Pledging of shares is an arrangement in which the promoters of a company use their shares as collateral to fulfill their financial requirements.
14. SALES: Sales are the proceeds a company generates from selling goods or services to its customers: In accounting terms, sales comprise one component of a company's revenue figure. On an income statement, sales are typically referred to as gross sales.
15. PROFIT: Corporate profit is the money left over after a corporation pays all of its expenses excluding taxes.
16. ROCE: The term return on capital employed (ROCE) refers to a financial ratio that can be used to assess a company's profitability and capital efficiency. In other words, this ratio can help to understand how well a company is generating profits from its capital as it is put to use.
17. ROE: Return on equity (ROE) is the measure of a company's net income divided by its shareholders' equity. ROE is a gauge of a corporation's profitability and how efficiently it generates those profits. The higher the ROE, the better a company is at converting its equity financing into profits.
18. PE: Price to Earnings Ratio or Price to Earnings Multiple is the ratio of share price of a stock to its earnings per share (EPS). PE ratio is one of the most popular valuation metric of stocks. It provides indication whether a stock at its current market price is expensive or cheap.
19. CAGR: Compound annual growth rate (CAGR) is a metric that smoothes annual gains in revenue, returns, customers, etc., over a specified number of years as if the growth had happened steadily each year over that time period.
20. EPS: It's a company's net profit divided by the number of common shares it has outstanding.
21. ASSET_TURNOVER: The asset turnover ratio measures the efficiency of a company's assets in generating revenue or sales. It compares the dollar amount of sales (revenues) to its total assets as an annualized percentage. Thus, to calculate the asset turnover ratio, divide net sales or revenue by the average total assets.
22. QUICK_RATIO: The quick ratio measures a company's ability to quickly convert liquid assets into cash to pay for its short-term financial obligations
22. DEBT_EQUITY: The debt-to-equity ratio measures your company's total debt relative to the amount originally invested by the owners and the earnings that have been retained over time.
Creating Data Frame with the Scarped Data
4.1Data Frame Information
Data Set Cleaning
5.1Removing Comma's From The Strings
5.2Changing The Data Type Of Numeric Strings in Integer or Float
5.3Checking for Null Values
5.4Replacing the Null Values
Exploratory Data Analysis (E.D.A.)
Getting Basic Necessary Details from Data Set
6.1Name & Number of Sectors
6.2Number of shares of each company
6.3Number of Companies in Each Sector
6.4Number of companies according to Market capitalization
6.5Company according to their sectors
6.6Loss making Sector & Companies Detail
6.7Profit making Sector & Companies Detail
"Telecomm-Service" SECTOR ANALYSIS
7.1Analyzing Debt and Market_Cap of companies
7.2CAGR check
"IT - Software" SECTOR ANALYSIS
8.1Analyzing Debt and Market_Cap of companies
8.2CAGR check
"Stock comparison
9.1Profit growth check
9.2Quick ratio check
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
import time
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import os
stocks=['BAJFINANCE','DMART','RELIANCE','ASIANPAINT','BERGEPAINT','TATAMOTORS','TCS','Pidilite Inds.','TVS Motor',\
'Rallis India','Nestle India','SBI Cards','HDFC Bank','Balkrishna Inds','Bharti Airtel','V-Mart Retail','Cipla',\
'Shalimar Paints','Apollo Hospitals','AU Small Finance','L & T Infotech','Deepak Nitrite','Aarti Industries',\
'Maruti Suzuki','P I Industries','Hind. Unilever','Muthoot Finance','MRF','CEAT','Tata Comm','Vodafone Idea',\
'Trent','Torrent Pharma.','Sun Pharma.Inds.','Kansai Nerolac','Fortis Health.','St Bk of India','KPIT Technologi.',\
'Fine Organic','Bajaj Auto','Meghmani Organi.','Varun Beverages','Power Fin.Corpn.','Goodyear India','M T N L',\
'Medplus Health','Abbott India','Dr Lal Pathlabs','Mindtree','Subex']
COMPANY=[]
NSE_CODE=[]
BSE_CODE=[]
SECTOR=[]
MARKET_CAP=[]
CURRENT_PRICE=[]
DOWN_FROM_52w_HIGH=[]
UP_FROM_52w_LOW=[]
DEBT=[]
DIV_YIELD=[]
BOOK_VALUE=[]
PROMOTER_HOLDING=[]
HOLDING_PLEDGED=[]
SALES=[]
SALES_GROWTH_5yrs=[]
PROFIT=[]
PROFIT_GROWTH_5yrs=[]
ROCE=[]
ROCE_5yr_AVG=[]
ROE=[]
ROE_5yr_AVG=[]
PE=[]
PE_5yr_AVG=[]
CAGR_5yr=[]
CAGR_10yr=[]
EPS=[]
ASSET_TURNOVER=[]
QUICK_RATIO=[]
DEBT_EQUITY=[]
c_driver=Service('C:\devops\chromedriver')
driver = webdriver.Chrome(service=c_driver)
driver.maximize_window()
driver.get('https://www.screener.in/explore/')
time.sleep(1)
log_in=driver.find_element(By.XPATH, '/html/body/nav/div[1]/div/div[1]/div/div[3]/div[2]/a[1]')
log_in.click()
time.sleep(1)
#Log in details to get the specific Ratios & Data
email=driver.find_element(By.XPATH, '/html/body/main/div[2]/div[2]/form/div[1]/input')
email.send_keys('genesisconstructionsolution@gmail.com')
password=driver.find_element(By.XPATH, '/html/body/main/div[2]/div[2]/form/div[2]/input')
password.send_keys('GENESIS#C.E.')
password.send_keys(Keys.ENTER)
# created a loop for the stocks list to get the data of each stock
for i in range(len(stocks)):
stock_search=driver.find_element(By.XPATH, '/html/body/nav/div[1]/div/div[1]/div/div[3]/div[1]/div/input')
stock_search.send_keys(stocks[i])
time.sleep(4)
stock_search.send_keys(Keys.ENTER)
time.sleep(3)
# scraping COMPANY NAME of stock
company_name=driver.find_element(By.XPATH, '/html/body/main/div[3]/div[1]/div/h1')
c_name=company_name.text
COMPANY.append(c_name)
# scraping NSE CODE of stock
nse=driver.find_element(By.XPATH, '/html/body/main/div[3]/div[2]/a[3]/span')
nse_name=nse.text.split(': ')
NSE_CODE.append(nse_name[1])
# scraping BSE CODE of stock
bse=driver.find_element(By.XPATH, '/html/body/main/div[3]/div[2]/a[2]/span')
bse_name=bse.text.split(': ')
BSE_CODE.append(bse_name[1])
# scraping SECTOR of stock
sector=driver.find_element(By.XPATH, '/html/body/main/section[3]/div[1]/div[1]/p/a[1]').text
SECTOR.append(sector)
# scraping MARKET CAPITALIZATION of stock
m_cap=driver.find_element(By.XPATH, '/html/body/main/div[3]/div[3]/div[2]/ul/li[1]/span[2]/span').text
MARKET_CAP.append(m_cap)
# scraping CURRENT PRICE of stock
price=driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[2]/span[2]/span[1]').text
CURRENT_PRICE.append(price)
# scraping the PERCENTAGE of stock that it is how much lower than it's 52week (one year) high
high=driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[27]/span[2]/span[1]').text
DOWN_FROM_52w_HIGH.append(high)
# scraping the PERCENTAGE of stock that it is how much upper than it's 52week (one year) high
low=driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[26]/span[2]/span[1]').text
UP_FROM_52w_LOW.append(low)
# scraping the LOAN(debt) of stock
debt= driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[11]/span[2]/span[1]').text
DEBT.append(debt)
# scraping the PROFIT SHARING PERCENTAGE (DIV_YIELD) of stock
div= driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[6]/span[2]/span[1]').text
DIV_YIELD.append(div)
# scraping the PHYSICAL ASSET VALUE (BOOK_VALUE) of stock
book= driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[5]/span[2]/span[1]').text
BOOK_VALUE.append(book)
# scraping the PROMOTER & OWNERS PERCENTAGE (PROMOTER_HOLDING) of stock
holding= driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[13]/span[2]/span[1]').text
PROMOTER_HOLDING.append(holding)
# scraping the PROMOTER & OWNERS PERCENTAGE OF PLEDGED (PROMOTER_HOLDING) of stock
pledge= driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[21]/span[2]/span[1]').text
HOLDING_PLEDGED.append(pledge)
# scraping the SALES GROWTH PERCENTAGE OF RECENT YEAR of stock
sale= driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[17]/span[2]/span[1]').text
SALES.append(sale)
# scraping the AVERAGE OF 5 YEAR SALES GROWTH PERCENTAGE of stock
sales= driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[10]/span[2]/span[1]').text
SALES_GROWTH_5yrs.append(sales)
# scraping the PROFIT GROWTH PERCENTAGE OF RECENT YEAR of stock
profit=driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[16]/span[2]/span[1]').text
PROFIT.append(profit)
# scraping the AVERAGE OF 5 YEAR PROFIT GROWTH PERCENTAGE of stock
profits= driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[14]/span[2]/span[1]').text
PROFIT_GROWTH_5yrs.append(profits)
# scraping the RETURN ON CAPITAL EMPLOYED of stock
roce= driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[7]/span[2]/span[1]').text
ROCE.append(roce)
# scraping the AVERAGE OF 5 YEAR RETURN ON CAPITAL EMPLOYED of stock
roce_5yr= driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[22]/span[2]/span[1]').text
ROCE_5yr_AVG.append(roce_5yr)
# scraping the RETURN ON EQUITY of stock
roe= driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[8]/span[2]/span[1]').text
ROE.append(roe)
# scraping the AVERAGE OF 5 YEAR RETURN ON EQUITY of stock
roe_5yr= driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[18]/span[2]/span[1]').text
ROE_5yr_AVG.append(roe_5yr)
# scraping the RATIO OF PRICE TO EARNING PER SHARE of stock
pe= driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[4]/span[2]/span[1]').text
PE.append(pe)
# scraping the AVERAGE OF 5 YEAR RATIO OF PRICE TO EARNING PER SHARE of stock
pe_5yr= driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[12]/span[2]/span[1]').text
PE_5yr_AVG.append(pe_5yr)
# scraping the AVERAGE OF 5 YEAR OF COMPOUND ANUAL GROWTH of stock
cagr_5=driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[25]/span[2]/span[1]').text
CAGR_5yr.append(cagr_5)
# scraping the AVERAGE OF 10 YEAR OF COMPOUND ANUAL GROWTH of stock
cagr_10=driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[24]/span[2]/span[1]').text
CAGR_10yr.append(cagr_10)
# scraping the EARNING PER SHARE of stock
eps= driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[15]/span[2]/span[1]').text
EPS.append(eps)
# scraping the ASSET TURNOVER of stock
asset= driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[19]/span[2]/span[1]').text
ASSET_TURNOVER.append(asset)
# scraping the CAPABILITY OF REPAYMENT RATIO(OUICK_RATIO) of stock
q= driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[20]/span[2]/span[1]').text
QUICK_RATIO.append(q)
# scraping the LOAN TO VALUE OF COMPANY RATIO of stock
de= driver.find_element(By.XPATH, '/html[1]/body[1]/main[1]/div[3]/div[3]/div[2]/ul[1]/li[23]/span[2]/span[1]').text
DEBT_EQUITY.append(de)
nxt_stock=driver.find_element(By.XPATH, '/html[1]/body[1]/nav[1]/div[1]/div[1]/div[1]/div[1]/div[1]/a[1]/img[1]')
nxt_stock.click()
df=pd.DataFrame({'COMPANY':COMPANY, 'NSE_CODE':NSE_CODE, 'BSE_CODE':BSE_CODE, 'SECTOR':SECTOR,\
'MARKET_CAP(in Cr.)':MARKET_CAP,'CURRENT_PRICE':CURRENT_PRICE,\
'DOWN_FROM_52w_HIGH(in %)':DOWN_FROM_52w_HIGH,'UP_FROM_52w_LOW(in %)':UP_FROM_52w_LOW,\
'DEBT(in Cr.)':DEBT,'DIV_YIELD(in %)':DIV_YIELD,'BOOK_VALUE':BOOK_VALUE,\
'PROMOTER_HOLDING(in %)':PROMOTER_HOLDING, 'HOLDING_PLEDGED(in %)': HOLDING_PLEDGED,\
'SALES(in %)':SALES, 'SALES_GROWTH_5yrs(in %)':SALES_GROWTH_5yrs,'PROFIT(in %)':PROFIT,\
'PROFIT_GROWTH_5yrs(in %)': PROFIT_GROWTH_5yrs,'ROCE(in %)':ROCE,\
'ROCE_5yr_AVG(in %)':ROCE_5yr_AVG, 'ROE(in %)':ROE, 'ROE_5yr_AVG(in %)':ROE_5yr_AVG,\
'PE_RATIO':PE, 'PE_RATIO_5yr_AVG':PE_5yr_AVG,'CAGR_5yr(in %)':CAGR_5yr,\
'CAGR_10yr(in %)':CAGR_10yr,'EPS':EPS,'ASSET_TURNOVER':ASSET_TURNOVER,\
'QUICK_RATIO':QUICK_RATIO,'DEBT_EQUITY_RATIO':DEBT_EQUITY
})
df.to_csv('C:/Users/ASUS/Downloads/stock fundamental analysis project data csv.csv',index=False)
df=pd.read_csv("C:/Users/ASUS/Downloads/stock fundamental analysis project data csv.csv")
pd.set_option('display.max_columns',29)
df
COMPANY | NSE_CODE | BSE_CODE | SECTOR | MARKET_CAP(in Cr.) | CURRENT_PRICE | DOWN_FROM_52w_HIGH(in %) | UP_FROM_52w_LOW(in %) | DEBT(in Cr.) | DIV_YIELD(in %) | BOOK_VALUE | PROMOTER_HOLDING(in %) | HOLDING_PLEDGED(in %) | SALES(in %) | SALES_GROWTH_5yrs(in %) | PROFIT(in %) | PROFIT_GROWTH_5yrs(in %) | ROCE(in %) | ROCE_5yr_AVG(in %) | ROE(in %) | ROE_5yr_AVG(in %) | PE_RATIO | PE_RATIO_5yr_AVG | CAGR_5yr(in %) | CAGR_10yr(in %) | EPS | ASSET_TURNOVER | QUICK_RATIO | DEBT_EQUITY_RATIO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Bajaj Finance Ltd | BAJFINANCE | 500034 | Finance | 422,293 | 6,975 | 13.30 | 33.60 | 183,273 | 0.29 | 794 | 55.9 | 0.00 | 30.10 | 26.00 | 99.4 | 30.90 | 10.30 | 11.00 | 17.50 | 17.70 | 42.60 | 40.70 | 31.90 | 48.50 | 164 | 0.16 | 1.26 | 3.81 |
1 | Avenue Supermarts Ltd | DMART | 540376 | Retail | 268,104 | 4,139 | 20.10 | 29.90 | 711 | 0.00 | 232 | 75.0 | 0.00 | 38.50 | 21.10 | 68.0 | 25.80 | 15.80 | 18.00 | 11.50 | 13.20 | 116.00 | 103.00 | 29.00 | NaN | 35.6 | 2.13 | 1.19 | 0.05 |
2 | Reliance Industries Ltd | RELIANCE | 500325 | Refineries | 1,740,392 | 2,572 | 9.93 | 18.00 | 316,030 | 0.31 | 1,168 | 50.6 | 0.00 | 46.40 | 18.10 | 24.2 | 14.40 | 9.42 | 10.00 | 8.16 | 9.59 | 27.10 | 17.90 | 24.10 | 20.70 | 98.1 | 0.50 | 0.63 | 0.40 |
3 | Asian Paints Ltd | ASIANPAINT | 500820 | Paints/Varnish | 292,090 | 3,045 | 15.20 | 19.00 | 1,866 | 0.63 | 147 | 52.6 | 10.60 | 28.20 | 14.10 | 15.6 | 9.71 | 29.70 | 33.60 | 23.20 | 25.40 | 77.60 | 59.10 | 20.90 | 22.20 | 38.2 | 1.34 | 1.04 | 0.13 |
4 | Berger Paints India Ltd | BERGEPAINT | 509480 | Paints/Varnish | 56,644 | 583 | 28.30 | 7.28 | 1,634 | 0.53 | 42.2 | 75.0 | 0.00 | 24.50 | 14.00 | 12.2 | 14.10 | 25.90 | 27.20 | 22.50 | 22.90 | 59.90 | 63.60 | 18.30 | 27.70 | 9.74 | 1.33 | 0.58 | 0.40 |
5 | Tata Motors Ltd | TATAMOTORS | 500570 | Automobile | 148,207 | 412 | 23.20 | 12.60 | 144,354 | 0.00 | 78.8 | 46.4 | 1.82 | 3.47 | 0.64 | -30,209 | NaN | 1.40 | 3.44 | -22.30 | -5.20 | NaN | -2.12 | -0.49 | 4.15 | -25.6 | 0.83 | 0.68 | 5.52 |
6 | Tata Consultancy Services Ltd | TCS | 532540 | IT - Software | 1,172,964 | 3,206 | 20.80 | 9.56 | 7,460 | 1.34 | 266 | 72.3 | 0.48 | 16.60 | 10.20 | 8.27 | 7.83 | 54.90 | 47.80 | 43.60 | 37.20 | 29.60 | 21.20 | 18.80 | 17.10 | 108 | 1.42 | 2.84 | 0.08 |
7 | Pidilite Industries Ltd | PIDILITIND | 500331 | Chemicals | 135,022 | 2,656 | 9.00 | 33.60 | 680 | 0.38 | 130 | 69.9 | 0.00 | 26.10 | 12.00 | -3.28 | 7.10 | 26.10 | 31.70 | 20.20 | 23.80 | 104.00 | 61.70 | 26.50 | 29.00 | 25.6 | 1.08 | 0.92 | 0.10 |
8 | TVS Motor Company Ltd | TVSMOTOR | 532343 | Automobile | 52,544 | 1,106 | 6.04 | 116.00 | 18,675 | 0.34 | 107 | 50.8 | 0.00 | 24.20 | 14.30 | 41.5 | 8.13 | 11.30 | 13.20 | 18.40 | 20.80 | 44.40 | 39.30 | 9.31 | 39.50 | 25.6 | 1.00 | 0.89 | 3.68 |
9 | Rallis India Ltd | RALLIS | 500355 | Agro Chemicals | 4,385 | 226 | 24.60 | 23.60 | 175 | 1.33 | 91.2 | 50.1 | 0.00 | 17.50 | 13.40 | -12.6 | 2.40 | 13.60 | 16.60 | 10.20 | 12.60 | 26.80 | 20.70 | 0.03 | 3.58 | 8.43 | 0.96 | 0.86 | 0.10 |
10 | Nestle India Ltd | NESTLEIND | 500790 | FMCG | 194,522 | 20,175 | 4.17 | 26.10 | 280 | 0.99 | 241 | 62.8 | 0.00 | 13.50 | 9.98 | 4.63 | 18.10 | 147.00 | 95.10 | 113.00 | 67.10 | 82.90 | 66.50 | 21.00 | 15.50 | 225 | 1.83 | 0.51 | 0.12 |
11 | SBI Cards & Payment Services Ltd | SBICARD | 543066 | Finance | 76,228 | 807 | 26.30 | 23.00 | 28,186 | 0.31 | 94.6 | 69.4 | 0.00 | 25.60 | 26.10 | 105 | 34.10 | 11.60 | 12.80 | 23.00 | 24.00 | 36.00 | 49.70 | NaN | NaN | 22.5 | 0.35 | 0.41 | 3.16 |
12 | HDFC Bank Ltd | HDFCBANK | 500180 | Banks | 849,930 | 1,525 | 11.50 | 19.90 | 1,784,970 | 1.02 | 446 | 25.6 | 0.00 | 13.90 | 13.20 | 22.0 | 20.00 | 5.83 | 6.77 | 16.60 | 16.80 | 20.40 | 24.20 | 10.80 | 16.80 | 75.2 | 0.07 | 2.66 | 7.22 |
13 | Balkrishna Industries Ltd | BALKRISIND | 502355 | Tyres | 36,364 | 1,881 | 25.90 | 11.80 | 2,529 | 0.85 | 359 | 58.3 | 0.00 | 37.20 | 17.40 | 2.56 | 17.00 | 23.80 | 22.00 | 21.90 | 19.50 | 25.80 | 24.90 | 14.30 | 29.90 | 73.0 | 0.87 | 0.48 | 0.36 |
14 | Bharti Airtel Ltd | BHARTIARTL | 532454 | Telecomm-Service | 476,676 | 826 | 1.87 | 31.30 | 217,989 | 0.36 | 131 | 55.1 | 0.00 | 19.80 | 4.07 | 125 | -3.36 | 12.00 | 8.30 | 5.86 | 2.13 | 76.70 | 36.80 | 12.70 | 12.50 | 11.4 | 0.33 | 0.45 | 2.99 |
15 | V-Mart Retail Ltd | VMART | 534976 | Retail | 5,594 | 2,830 | 41.60 | 17.60 | 902 | 0.03 | 430 | 46.1 | 0.00 | 76.80 | 10.70 | 4,888 | -22.40 | 5.21 | 11.40 | 1.46 | 7.58 | 92.00 | 44.20 | 15.00 | NaN | 30.8 | 0.89 | 0.28 | 1.06 |
16 | Cipla Ltd | CIPLA | 500087 | Pharmaceuticals | 90,575 | 1,122 | 5.31 | 32.00 | 1,068 | 0.45 | 271 | 33.6 | 0.00 | 5.50 | 8.62 | -2.62 | 23.10 | 17.50 | 13.60 | 13.20 | 11.30 | 34.90 | 27.90 | 13.00 | 11.00 | 31.8 | 0.84 | 1.97 | 0.05 |
17 | Shalimar Paints Ltd | SHALPAINTS | 509874 | Paints/Varnish | 1,121 | 155 | 15.80 | 64.00 | 145 | 0.00 | 51.5 | 39.9 | 0.00 | 16.30 | 0.47 | 17.9 | NaN | -7.19 | -9.53 | -18.00 | -21.40 | NaN | -10.70 | 0.54 | 5.17 | -9.00 | 0.61 | 1.36 | 0.39 |
18 | Apollo Hospitals Enterprise Ltd | APOLLOHOSP | 508869 | Healthcare | 61,618 | 4,285 | 27.80 | 27.50 | 3,998 | 0.27 | 417 | 29.3 | 16.40 | 16.20 | 15.10 | 7.82 | 44.80 | 17.80 | 11.80 | 16.60 | 7.94 | 73.40 | 72.40 | 33.80 | 18.00 | 58.4 | 1.19 | 1.32 | 0.67 |
19 | AU Small Finance Bank Ltd | AUBANK | 540611 | Banks | 41,871 | 628 | 14.30 | 35.90 | 58,575 | 0.08 | 119 | 25.6 | 0.00 | 31.30 | 35.80 | 11.4 | 6.58 | 7.19 | 8.47 | 16.60 | 17.90 | 33.30 | 34.70 | 15.80 | NaN | 19.7 | 0.10 | 2.31 | 7.84 |
20 | Larsen & Toubro Infotech Ltd | LTI | 540005 | IT - Software | 85,278 | 4,862 | 36.00 | 30.20 | 824 | 0.93 | 524 | 74.0 | 0.00 | 30.40 | 19.20 | 21.3 | 19.20 | 35.70 | 38.60 | 28.50 | 30.50 | 33.30 | 19.50 | 38.80 | NaN | 146 | 1.35 | 3.09 | 0.09 |
21 | Deepak Nitrite Ltd | DEEPAKNTR | 506401 | Chemicals | 28,361 | 2,079 | 22.70 | 23.70 | 270 | 0.34 | 268 | 45.7 | 0.00 | 28.90 | 37.80 | -13.6 | 87.00 | 44.50 | 32.80 | 37.40 | 34.20 | 30.90 | 21.50 | 57.00 | 57.00 | 67.4 | 1.70 | 2.26 | 0.07 |
22 | Aarti Industries Ltd | AARTIIND | 524208 | Chemicals | 25,673 | 708 | 30.30 | 16.60 | 2,594 | 0.49 | 163 | 44.2 | 0.00 | 56.70 | 17.20 | 120 | 32.90 | 22.10 | 17.60 | 27.80 | 22.20 | 19.30 | 26.50 | 29.10 | 42.40 | 36.7 | 0.81 | 0.80 | 0.44 |
23 | Maruti Suzuki India Ltd | MARUTI | 532500 | Automobile | 274,810 | 9,097 | 6.88 | 39.20 | 625 | 0.66 | 1,893 | 56.4 | 0.00 | 24.00 | 5.34 | 44.4 | -7.94 | 8.95 | 13.60 | 7.25 | 10.20 | 45.30 | 26.30 | 2.14 | 20.10 | 201 | 1.21 | 0.80 | 0.01 |
24 | P I Industries Ltd | PIIND | 523642 | Agro Chemicals | 53,018 | 3,494 | 5.52 | 49.80 | 280 | 0.17 | 436 | 46.1 | 0.00 | 23.60 | 18.40 | 29.3 | 12.90 | 17.30 | 21.20 | 14.70 | 17.50 | 51.80 | 34.70 | 33.20 | 41.90 | 67.5 | 0.72 | 2.53 | 0.04 |
25 | Hindustan Unilever Ltd | HINDUNILVR | 500696 | FMCG | 590,593 | 2,514 | 8.06 | 32.20 | 1,139 | 1.35 | 211 | 61.9 | 0.00 | 14.30 | 9.60 | 14.7 | 15.60 | 24.30 | 48.30 | 18.40 | 35.80 | 61.00 | 55.20 | 14.30 | 16.90 | 41.1 | 0.75 | 0.99 | 0.02 |
26 | Muthoot Finance Ltd | MUTHOOTFIN | 533398 | Finance | 44,377 | 1,105 | 35.80 | 16.40 | 46,770 | 1.81 | 479 | 73.4 | 0.00 | -5.33 | 14.00 | -7.43 | 27.40 | 14.20 | 15.60 | 23.60 | 25.40 | 12.10 | 12.50 | 18.00 | 17.20 | 91.2 | 0.17 | 3.29 | 2.43 |
27 | MRF Ltd | MRF | 500290 | Tyres | 37,087 | 87,469 | 8.89 | 39.00 | 3,118 | 0.17 | 33,566 | 27.9 | 0.00 | 17.20 | 7.57 | -53.0 | -14.90 | 7.05 | 12.60 | 4.85 | 9.76 | 65.30 | 21.80 | 5.36 | 24.00 | 1,339 | 0.85 | 0.78 | 0.22 |
28 | CEAT Ltd | CEATLTD | 500878 | Tyres | 6,966 | 1,722 | 3.68 | 93.50 | 2,393 | 0.17 | 809 | 47.2 | 0.00 | 20.80 | 10.20 | -89.3 | -25.50 | 6.35 | 11.60 | 2.59 | 9.28 | 182.00 | 14.80 | -0.14 | 32.10 | 5.52 | 1.08 | 0.36 | 0.73 |
29 | Tata Communications Ltd | TATACOMM | 500483 | Telecomm-Service | 37,453 | 1,314 | 17.40 | 53.50 | 8,840 | 1.58 | 31.8 | 58.9 | 4.96 | 3.72 | -1.04 | 34.2 | -6.74 | 21.80 | 13.20 | 282.00 | NaN | 21.10 | 16.70 | 24.60 | 24.40 | 64.4 | 0.82 | 0.61 | 9.74 |
30 | Vodafone Idea Ltd | IDEA | 532822 | Telecomm-Service | 27,783 | 8.65 | 48.50 | 11.60 | 248,176 | 0.00 | -23.8 | 75.0 | 0.00 | 4.92 | 1.60 | -6.46 | NaN | NaN | NaN | NaN | NaN | NaN | -0.60 | -31.80 | -17.00 | -9.20 | 0.19 | 0.24 | NaN |
31 | Trent Ltd | TRENT | 500251 | Retail | 52,289 | 1,471 | 6.37 | 51.60 | 4,526 | 0.12 | 67.0 | 37.0 | 0.00 | 92.00 | 19.90 | 550 | -14.40 | 9.29 | 9.60 | 1.60 | 1.76 | 176.00 | 124.00 | 36.40 | 29.00 | 10.2 | 0.67 | 0.79 | 1.90 |
32 | Torrent Pharmaceuticals Ltd | TORNTPHARM | 500420 | Pharmaceuticals | 56,339 | 1,665 | 4.88 | 34.00 | 4,083 | 0.24 | 180 | 71.2 | 0.00 | 8.19 | 7.91 | -5.29 | 4.12 | 18.90 | 15.50 | 18.30 | 18.10 | 47.00 | 32.60 | 22.10 | 25.80 | 23.6 | 0.63 | 0.73 | 0.67 |
33 | Sun Pharmaceuticals Industries Ltd | SUNPHARMA | 524715 | Pharmaceuticals | 242,489 | 1,011 | 5.63 | 37.80 | 4,366 | 0.99 | 221 | 54.5 | 4.04 | 11.80 | 4.13 | 9.17 | -0.99 | 18.40 | 12.90 | 14.00 | 10.20 | 30.60 | 43.10 | 13.90 | 11.40 | 17.1 | 0.56 | 1.74 | 0.08 |
34 | Kansai Nerolac Paints Ltd | KANSAINER | 500165 | Paints/Varnish | 23,896 | 443 | 29.60 | 23.80 | 314 | 0.51 | 80.9 | 75.0 | 0.00 | 20.70 | 9.46 | -22.5 | -6.75 | 11.40 | 18.10 | 8.12 | 12.80 | 58.60 | 53.00 | -2.48 | 15.70 | 7.84 | 1.13 | 1.24 | 0.07 |
35 | Fortis Healthcare Ltd | FORTIS | 532843 | Healthcare | 21,094 | 279 | 14.00 | 27.10 | 1,255 | 0.00 | 81.8 | 31.2 | 0.00 | 19.90 | 4.57 | 120 | -2.33 | 10.80 | 5.50 | 6.12 | 0.31 | 51.60 | 22.20 | 15.80 | 10.50 | 5.48 | 0.51 | 0.80 | 0.20 |
36 | State Bank of India | SBIN | 500112 | Banks | 540,608 | 606 | 2.75 | 42.50 | 4,536,570 | 1.17 | 342 | 57.5 | 0.00 | 10.40 | 4.70 | 21.7 | 160.00 | 4.44 | 4.56 | 12.20 | 5.81 | 13.10 | 12.40 | 12.70 | 10.80 | 46.1 | 0.06 | 3.06 | 14.80 |
37 | KPIT Technologies Ltd | KPITTECH | 542651 | IT - Software | 18,200 | 664 | 17.10 | 69.70 | 186 | 0.47 | 50.8 | 40.1 | 0.82 | 22.10 | NaN | 46.6 | NaN | 24.10 | NaN | 21.50 | NaN | 57.30 | 32.70 | NaN | NaN | 11.6 | 1.13 | 2.02 | 0.13 |
38 | Fine Organic Industries Ltd | FINEORG | 541557 | Chemicals | 18,207 | 5,938 | 19.00 | 81.60 | 45.0 | 0.15 | 420 | 75.0 | 0.00 | 93.70 | 19.20 | 267 | 27.20 | 38.80 | 34.10 | 30.70 | 26.80 | 34.00 | 35.50 | NaN | NaN | 175 | 1.72 | 2.61 | 0.03 |
39 | Bajaj Auto Ltd | BAJAJ-AUTO | 532977 | Automobile | 107,778 | 3,725 | 9.85 | 23.00 | 124 | 3.76 | 900 | 54.8 | 0.01 | 4.61 | 8.79 | -7.75 | 5.87 | 23.40 | 27.50 | 19.00 | 20.90 | 19.30 | 17.10 | 2.74 | 7.29 | 202 | 0.96 | 1.58 | 0.00 |
40 | Meghmani Organics Ltd | MOL | 543331 | Agro Chemicals | 2,941 | 116 | 24.20 | 43.20 | 665 | 1.21 | 63.1 | 49.4 | 0.00 | 47.20 | NaN | 59.7 | NaN | 24.10 | NaN | 22.60 | NaN | 8.51 | 8.71 | NaN | NaN | 13.6 | 1.05 | 0.71 | 0.41 |
41 | Varun Beverages Ltd | VBL | 540180 | FMCG | 73,987 | 1,139 | 7.62 | 109.00 | 2,371 | 0.22 | 74.1 | 63.9 | 0.04 | 50.80 | 18.00 | 115 | 72.10 | 17.40 | 14.60 | 18.60 | 15.30 | 51.40 | 55.40 | 50.30 | NaN | 22.2 | 0.98 | 0.34 | 0.49 |
42 | Power Finance Corporation Ltd | PFC | 532810 | Finance | 30,836 | 117 | 17.90 | 20.30 | 674,847 | 10.30 | 290 | 56.0 | 0.00 | 1.44 | 22.60 | 8.39 | 44.40 | 9.38 | 9.66 | 21.20 | 19.70 | 2.18 | 3.28 | -1.61 | 2.15 | 53.6 | 0.10 | 1.51 | 8.82 |
43 | Goodyear India Ltd | GOODYEAR | 500168 | Tyres | 2,481 | 1,075 | 10.80 | 37.30 | 16.7 | 1.86 | 310 | 74.0 | 0.00 | 29.60 | 10.00 | -32.2 | -4.15 | 18.00 | 19.50 | 13.20 | 13.50 | 21.80 | 15.70 | 6.03 | 12.90 | 49.3 | 1.77 | 1.08 | 0.02 |
44 | Mahanagar Telephone Nigam Ltd | MTNL | 500108 | Telecomm-Service | 1,373 | 21.8 | 46.60 | 30.90 | 26,820 | 0.00 | -296 | 56.9 | 0.00 | -16.80 | -17.30 | -2.26 | 2.17 | -5.08 | -11.30 | NaN | NaN | NaN | -0.48 | -0.89 | -2.19 | -40.8 | 0.09 | 0.43 | NaN |
45 | Medplus Health Services Ltd | MEDPLUS | 543427 | Retail | 6,904 | 579 | 56.90 | 1.52 | 815 | 0.00 | 119 | 40.4 | 50.50 | 23.10 | 13.40 | 49.4 | 25.70 | 11.40 | 12.00 | 10.40 | 9.25 | 134.00 | 126.00 | NaN | NaN | 9.00 | 1.82 | 1.28 | 0.57 |
46 | Abbott India Ltd | ABBOTINDIA | 500488 | Pharmaceuticals | 40,883 | 19,239 | 7.95 | 24.00 | 152 | 0.75 | 1,327 | 75.0 | 0.00 | 12.20 | 11.10 | 14.5 | 23.60 | 38.40 | 37.10 | 29.50 | 27.00 | 50.60 | 35.70 | 33.60 | 29.40 | 381 | 1.22 | 2.63 | 0.05 |
47 | Dr Lal Pathlabs Ltd | LALPATHLAB | 539524 | Healthcare | 19,670 | 2,360 | 40.20 | 30.70 | 285 | 0.51 | 186 | 55.0 | 0.00 | 1.53 | 18.00 | -38.6 | 17.40 | 29.40 | 32.40 | 25.10 | 24.00 | 79.30 | 51.70 | 22.60 | NaN | 29.8 | 1.04 | 1.73 | 0.18 |
48 | Mindtree Ltd | MINDTREE | 532819 | IT - Software | 57,401 | 3,480 | 31.20 | 31.40 | 613 | 1.06 | 344 | 61.0 | 0.00 | 35.00 | 15.00 | 36.4 | 31.60 | 41.50 | 33.40 | 33.80 | 26.90 | 30.40 | 21.60 | 47.80 | 35.00 | 115 | 1.45 | 2.96 | 0.11 |
49 | Subex Ltd | SUBEXLTD | 532348 | IT - Software | 1,725 | 30.6 | 50.10 | 64.50 | 14.7 | 0.00 | 10.1 | 0.0 | 0.00 | -7.65 | -1.37 | -73.2 | -19.90 | 6.18 | 8.34 | 3.68 | 5.34 | 132.00 | 20.80 | 28.30 | 7.80 | 0.23 | 0.46 | 3.75 | 0.03 |
df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 50 entries, 0 to 49 Data columns (total 29 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 COMPANY 50 non-null object 1 NSE_CODE 50 non-null object 2 BSE_CODE 50 non-null int64 3 SECTOR 50 non-null object 4 MARKET_CAP(in Cr.) 50 non-null object 5 CURRENT_PRICE 50 non-null object 6 DOWN_FROM_52w_HIGH(in %) 50 non-null float64 7 UP_FROM_52w_LOW(in %) 50 non-null float64 8 DEBT(in Cr.) 50 non-null object 9 DIV_YIELD(in %) 50 non-null float64 10 BOOK_VALUE 50 non-null object 11 PROMOTER_HOLDING(in %) 50 non-null float64 12 HOLDING_PLEDGED(in %) 50 non-null float64 13 SALES(in %) 50 non-null float64 14 SALES_GROWTH_5yrs(in %) 48 non-null float64 15 PROFIT(in %) 50 non-null object 16 PROFIT_GROWTH_5yrs(in %) 45 non-null float64 17 ROCE(in %) 49 non-null float64 18 ROCE_5yr_AVG(in %) 47 non-null float64 19 ROE(in %) 48 non-null float64 20 ROE_5yr_AVG(in %) 45 non-null float64 21 PE_RATIO 46 non-null float64 22 PE_RATIO_5yr_AVG 50 non-null float64 23 CAGR_5yr(in %) 45 non-null float64 24 CAGR_10yr(in %) 39 non-null float64 25 EPS 50 non-null object 26 ASSET_TURNOVER 50 non-null float64 27 QUICK_RATIO 50 non-null float64 28 DEBT_EQUITY_RATIO 48 non-null float64 dtypes: float64(19), int64(1), object(9) memory usage: 11.5+ KB
need to change the numeric value as a integer or float
# Replacing the comma with nothing in the data set to make the values clean
for col in df.columns:
if df[col].dtype==object:
df[col]=df[col].str.replace(',','')
df.head(2)
#checking that the above cleaing is done or not
COMPANY | NSE_CODE | BSE_CODE | SECTOR | MARKET_CAP(in Cr.) | CURRENT_PRICE | DOWN_FROM_52w_HIGH(in %) | UP_FROM_52w_LOW(in %) | DEBT(in Cr.) | DIV_YIELD(in %) | BOOK_VALUE | PROMOTER_HOLDING(in %) | HOLDING_PLEDGED(in %) | SALES(in %) | SALES_GROWTH_5yrs(in %) | PROFIT(in %) | PROFIT_GROWTH_5yrs(in %) | ROCE(in %) | ROCE_5yr_AVG(in %) | ROE(in %) | ROE_5yr_AVG(in %) | PE_RATIO | PE_RATIO_5yr_AVG | CAGR_5yr(in %) | CAGR_10yr(in %) | EPS | ASSET_TURNOVER | QUICK_RATIO | DEBT_EQUITY_RATIO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Bajaj Finance Ltd | BAJFINANCE | 500034 | Finance | 422293 | 6975 | 13.3 | 33.6 | 183273 | 0.29 | 794 | 55.9 | 0.0 | 30.1 | 26.0 | 99.4 | 30.9 | 10.3 | 11.0 | 17.5 | 17.7 | 42.6 | 40.7 | 31.9 | 48.5 | 164 | 0.16 | 1.26 | 3.81 |
1 | Avenue Supermarts Ltd | DMART | 540376 | Retail | 268104 | 4139 | 20.1 | 29.9 | 711 | 0.00 | 232 | 75.0 | 0.0 | 38.5 | 21.1 | 68.0 | 25.8 | 15.8 | 18.0 | 11.5 | 13.2 | 116.0 | 103.0 | 29.0 | NaN | 35.6 | 2.13 | 1.19 | 0.05 |
for col in df.columns:
df[col]=pd.to_numeric(df[col],errors='ignore')
df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 50 entries, 0 to 49 Data columns (total 29 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 COMPANY 50 non-null object 1 NSE_CODE 50 non-null object 2 BSE_CODE 50 non-null int64 3 SECTOR 50 non-null object 4 MARKET_CAP(in Cr.) 50 non-null int64 5 CURRENT_PRICE 50 non-null float64 6 DOWN_FROM_52w_HIGH(in %) 50 non-null float64 7 UP_FROM_52w_LOW(in %) 50 non-null float64 8 DEBT(in Cr.) 50 non-null float64 9 DIV_YIELD(in %) 50 non-null float64 10 BOOK_VALUE 50 non-null float64 11 PROMOTER_HOLDING(in %) 50 non-null float64 12 HOLDING_PLEDGED(in %) 50 non-null float64 13 SALES(in %) 50 non-null float64 14 SALES_GROWTH_5yrs(in %) 48 non-null float64 15 PROFIT(in %) 50 non-null float64 16 PROFIT_GROWTH_5yrs(in %) 45 non-null float64 17 ROCE(in %) 49 non-null float64 18 ROCE_5yr_AVG(in %) 47 non-null float64 19 ROE(in %) 48 non-null float64 20 ROE_5yr_AVG(in %) 45 non-null float64 21 PE_RATIO 46 non-null float64 22 PE_RATIO_5yr_AVG 50 non-null float64 23 CAGR_5yr(in %) 45 non-null float64 24 CAGR_10yr(in %) 39 non-null float64 25 EPS 50 non-null float64 26 ASSET_TURNOVER 50 non-null float64 27 QUICK_RATIO 50 non-null float64 28 DEBT_EQUITY_RATIO 48 non-null float64 dtypes: float64(24), int64(2), object(3) memory usage: 11.5+ KB
df.isnull().sum()
COMPANY 0 NSE_CODE 0 BSE_CODE 0 SECTOR 0 MARKET_CAP(in Cr.) 0 CURRENT_PRICE 0 DOWN_FROM_52w_HIGH(in %) 0 UP_FROM_52w_LOW(in %) 0 DEBT(in Cr.) 0 DIV_YIELD(in %) 0 BOOK_VALUE 0 PROMOTER_HOLDING(in %) 0 HOLDING_PLEDGED(in %) 0 SALES(in %) 0 SALES_GROWTH_5yrs(in %) 2 PROFIT(in %) 0 PROFIT_GROWTH_5yrs(in %) 5 ROCE(in %) 1 ROCE_5yr_AVG(in %) 3 ROE(in %) 2 ROE_5yr_AVG(in %) 5 PE_RATIO 4 PE_RATIO_5yr_AVG 0 CAGR_5yr(in %) 5 CAGR_10yr(in %) 11 EPS 0 ASSET_TURNOVER 0 QUICK_RATIO 0 DEBT_EQUITY_RATIO 2 dtype: int64
As we can observe in few columns have null value and as there Data type and requirement for analysis we can replace them with zero
df.fillna(0,inplace=True,downcast='infer')
df.isnull().sum()
COMPANY 0 NSE_CODE 0 BSE_CODE 0 SECTOR 0 MARKET_CAP(in Cr.) 0 CURRENT_PRICE 0 DOWN_FROM_52w_HIGH(in %) 0 UP_FROM_52w_LOW(in %) 0 DEBT(in Cr.) 0 DIV_YIELD(in %) 0 BOOK_VALUE 0 PROMOTER_HOLDING(in %) 0 HOLDING_PLEDGED(in %) 0 SALES(in %) 0 SALES_GROWTH_5yrs(in %) 0 PROFIT(in %) 0 PROFIT_GROWTH_5yrs(in %) 0 ROCE(in %) 0 ROCE_5yr_AVG(in %) 0 ROE(in %) 0 ROE_5yr_AVG(in %) 0 PE_RATIO 0 PE_RATIO_5yr_AVG 0 CAGR_5yr(in %) 0 CAGR_10yr(in %) 0 EPS 0 ASSET_TURNOVER 0 QUICK_RATIO 0 DEBT_EQUITY_RATIO 0 dtype: int64
df.head()
COMPANY | NSE_CODE | BSE_CODE | SECTOR | MARKET_CAP(in Cr.) | CURRENT_PRICE | DOWN_FROM_52w_HIGH(in %) | UP_FROM_52w_LOW(in %) | DEBT(in Cr.) | DIV_YIELD(in %) | BOOK_VALUE | PROMOTER_HOLDING(in %) | HOLDING_PLEDGED(in %) | SALES(in %) | SALES_GROWTH_5yrs(in %) | PROFIT(in %) | PROFIT_GROWTH_5yrs(in %) | ROCE(in %) | ROCE_5yr_AVG(in %) | ROE(in %) | ROE_5yr_AVG(in %) | PE_RATIO | PE_RATIO_5yr_AVG | CAGR_5yr(in %) | CAGR_10yr(in %) | EPS | ASSET_TURNOVER | QUICK_RATIO | DEBT_EQUITY_RATIO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Bajaj Finance Ltd | BAJFINANCE | 500034 | Finance | 422293 | 6975.0 | 13.30 | 33.60 | 183273.0 | 0.29 | 794.0 | 55.9 | 0.0 | 30.1 | 26.0 | 99.4 | 30.90 | 10.30 | 11.0 | 17.50 | 17.70 | 42.6 | 40.7 | 31.9 | 48.5 | 164.00 | 0.16 | 1.26 | 3.81 |
1 | Avenue Supermarts Ltd | DMART | 540376 | Retail | 268104 | 4139.0 | 20.10 | 29.90 | 711.0 | 0.00 | 232.0 | 75.0 | 0.0 | 38.5 | 21.1 | 68.0 | 25.80 | 15.80 | 18.0 | 11.50 | 13.20 | 116.0 | 103.0 | 29.0 | 0.0 | 35.60 | 2.13 | 1.19 | 0.05 |
2 | Reliance Industries Ltd | RELIANCE | 500325 | Refineries | 1740392 | 2572.0 | 9.93 | 18.00 | 316030.0 | 0.31 | 1168.0 | 50.6 | 0.0 | 46.4 | 18.1 | 24.2 | 14.40 | 9.42 | 10.0 | 8.16 | 9.59 | 27.1 | 17.9 | 24.1 | 20.7 | 98.10 | 0.50 | 0.63 | 0.40 |
3 | Asian Paints Ltd | ASIANPAINT | 500820 | Paints/Varnish | 292090 | 3045.0 | 15.20 | 19.00 | 1866.0 | 0.63 | 147.0 | 52.6 | 10.6 | 28.2 | 14.1 | 15.6 | 9.71 | 29.70 | 33.6 | 23.20 | 25.40 | 77.6 | 59.1 | 20.9 | 22.2 | 38.20 | 1.34 | 1.04 | 0.13 |
4 | Berger Paints India Ltd | BERGEPAINT | 509480 | Paints/Varnish | 56644 | 583.0 | 28.30 | 7.28 | 1634.0 | 0.53 | 42.2 | 75.0 | 0.0 | 24.5 | 14.0 | 12.2 | 14.10 | 25.90 | 27.2 | 22.50 | 22.90 | 59.9 | 63.6 | 18.3 | 27.7 | 9.74 | 1.33 | 0.58 | 0.40 |
pd.DataFrame({'SECTOR':df['SECTOR'].unique()})
SECTOR | |
---|---|
0 | Finance |
1 | Retail |
2 | Refineries |
3 | Paints/Varnish |
4 | Automobile |
5 | IT - Software |
6 | Chemicals |
7 | Agro Chemicals |
8 | FMCG |
9 | Banks |
10 | Tyres |
11 | Telecomm-Service |
12 | Pharmaceuticals |
13 | Healthcare |
df[['SECTOR']].groupby('SECTOR').count().reset_index()
SECTOR | |
---|---|
0 | Agro Chemicals |
1 | Automobile |
2 | Banks |
3 | Chemicals |
4 | FMCG |
5 | Finance |
6 | Healthcare |
7 | IT - Software |
8 | Paints/Varnish |
9 | Pharmaceuticals |
10 | Refineries |
11 | Retail |
12 | Telecomm-Service |
13 | Tyres |
print('Number of Total Sectors= '+str(df['SECTOR'].nunique()))
Number of Total Sectors= 14
share_num=df[['COMPANY','MARKET_CAP(in Cr.)','CURRENT_PRICE']].copy()
share_num['NUM_OF_SHARES(in Cr.)']=(share_num['MARKET_CAP(in Cr.)']/share_num['CURRENT_PRICE'])
share_num
COMPANY | MARKET_CAP(in Cr.) | CURRENT_PRICE | NUM_OF_SHARES(in Cr.) | |
---|---|---|---|---|
0 | Bajaj Finance Ltd | 422293 | 6975.00 | 60.543799 |
1 | Avenue Supermarts Ltd | 268104 | 4139.00 | 64.775066 |
2 | Reliance Industries Ltd | 1740392 | 2572.00 | 676.668740 |
3 | Asian Paints Ltd | 292090 | 3045.00 | 95.924466 |
4 | Berger Paints India Ltd | 56644 | 583.00 | 97.159520 |
5 | Tata Motors Ltd | 148207 | 412.00 | 359.725728 |
6 | Tata Consultancy Services Ltd | 1172964 | 3206.00 | 365.865253 |
7 | Pidilite Industries Ltd | 135022 | 2656.00 | 50.836596 |
8 | TVS Motor Company Ltd | 52544 | 1106.00 | 47.508137 |
9 | Rallis India Ltd | 4385 | 226.00 | 19.402655 |
10 | Nestle India Ltd | 194522 | 20175.00 | 9.641735 |
11 | SBI Cards & Payment Services Ltd | 76228 | 807.00 | 94.458488 |
12 | HDFC Bank Ltd | 849930 | 1525.00 | 557.331148 |
13 | Balkrishna Industries Ltd | 36364 | 1881.00 | 19.332270 |
14 | Bharti Airtel Ltd | 476676 | 826.00 | 577.089588 |
15 | V-Mart Retail Ltd | 5594 | 2830.00 | 1.976678 |
16 | Cipla Ltd | 90575 | 1122.00 | 80.726381 |
17 | Shalimar Paints Ltd | 1121 | 155.00 | 7.232258 |
18 | Apollo Hospitals Enterprise Ltd | 61618 | 4285.00 | 14.379930 |
19 | AU Small Finance Bank Ltd | 41871 | 628.00 | 66.673567 |
20 | Larsen & Toubro Infotech Ltd | 85278 | 4862.00 | 17.539696 |
21 | Deepak Nitrite Ltd | 28361 | 2079.00 | 13.641655 |
22 | Aarti Industries Ltd | 25673 | 708.00 | 36.261299 |
23 | Maruti Suzuki India Ltd | 274810 | 9097.00 | 30.208860 |
24 | P I Industries Ltd | 53018 | 3494.00 | 15.174013 |
25 | Hindustan Unilever Ltd | 590593 | 2514.00 | 234.921639 |
26 | Muthoot Finance Ltd | 44377 | 1105.00 | 40.160181 |
27 | MRF Ltd | 37087 | 87469.00 | 0.424002 |
28 | CEAT Ltd | 6966 | 1722.00 | 4.045296 |
29 | Tata Communications Ltd | 37453 | 1314.00 | 28.503044 |
30 | Vodafone Idea Ltd | 27783 | 8.65 | 3211.907514 |
31 | Trent Ltd | 52289 | 1471.00 | 35.546567 |
32 | Torrent Pharmaceuticals Ltd | 56339 | 1665.00 | 33.837237 |
33 | Sun Pharmaceuticals Industries Ltd | 242489 | 1011.00 | 239.850643 |
34 | Kansai Nerolac Paints Ltd | 23896 | 443.00 | 53.941309 |
35 | Fortis Healthcare Ltd | 21094 | 279.00 | 75.605735 |
36 | State Bank of India | 540608 | 606.00 | 892.092409 |
37 | KPIT Technologies Ltd | 18200 | 664.00 | 27.409639 |
38 | Fine Organic Industries Ltd | 18207 | 5938.00 | 3.066184 |
39 | Bajaj Auto Ltd | 107778 | 3725.00 | 28.933691 |
40 | Meghmani Organics Ltd | 2941 | 116.00 | 25.353448 |
41 | Varun Beverages Ltd | 73987 | 1139.00 | 64.957858 |
42 | Power Finance Corporation Ltd | 30836 | 117.00 | 263.555556 |
43 | Goodyear India Ltd | 2481 | 1075.00 | 2.307907 |
44 | Mahanagar Telephone Nigam Ltd | 1373 | 21.80 | 62.981651 |
45 | Medplus Health Services Ltd | 6904 | 579.00 | 11.924007 |
46 | Abbott India Ltd | 40883 | 19239.00 | 2.125006 |
47 | Dr Lal Pathlabs Ltd | 19670 | 2360.00 | 8.334746 |
48 | Mindtree Ltd | 57401 | 3480.00 | 16.494540 |
49 | Subex Ltd | 1725 | 30.60 | 56.372549 |
plt.figure(figsize=(13,6), dpi=200)
plt.xticks(rotation=90)
plt.title('Comparison Between Share numbers & MarketCapitalization',size=25)
chart_1=sns.barplot(data=share_num, x='COMPANY', y='NUM_OF_SHARES(in Cr.)',)
plt.ylabel('Numbre Of Shares',size=20)
plt.xlabel('Companies',size=25)
chart_2=chart_1.twinx()
sns.lineplot(data=share_num, x='COMPANY', y='MARKET_CAP(in Cr.)', marker='o', color='grey')
plt.ylabel('Market Capitalization',size=20)
Text(0, 0.5, 'Market Capitalization')
df_sector=df[['SECTOR','COMPANY']].groupby('SECTOR').count().reset_index()
df_sector
SECTOR | COMPANY | |
---|---|---|
0 | Agro Chemicals | 3 |
1 | Automobile | 4 |
2 | Banks | 3 |
3 | Chemicals | 4 |
4 | FMCG | 3 |
5 | Finance | 4 |
6 | Healthcare | 3 |
7 | IT - Software | 5 |
8 | Paints/Varnish | 4 |
9 | Pharmaceuticals | 4 |
10 | Refineries | 1 |
11 | Retail | 4 |
12 | Telecomm-Service | 4 |
13 | Tyres | 4 |
plt.figure(figsize=(13,6), dpi=150)
plt.xticks(rotation=45)
plt.title('Number Of Companies',size=20)
sns.barplot(data=df_sector, x='SECTOR', y='COMPANY',palette='mako')
plt.xlabel('Sectors',size=20)
plt.ylabel('Company Numbers',size=20)
Text(0, 0.5, 'Company Numbers')
SMALL_CAP_COUNT=0
MID_CAP_COUNT=0
LARGE_CAP_COUNT=0
BLUE_CHIP_COUNT=0
MARKET_CAP_DICT={}
MARKET_CAPITAL=list(df['MARKET_CAP(in Cr.)'])
for CAPITAL in MARKET_CAPITAL:
if CAPITAL<50000:
SMALL_CAP_COUNT+=1
MARKET_CAP_DICT['SMALL_CAP']=SMALL_CAP_COUNT
elif CAPITAL>50000 and CAPITAL<100000:
MID_CAP_COUNT+=1
MARKET_CAP_DICT['MID_CAP']=MID_CAP_COUNT
elif CAPITAL>100000 and CAPITAL<1000000:
LARGE_CAP_COUNT+=1
MARKET_CAP_DICT['LARGE_CAP']=LARGE_CAP_COUNT
elif CAPITAL>1000000:
BLUE_CHIP_COUNT+=1
MARKET_CAP_DICT['BLUE_CHIP']=BLUE_CHIP_COUNT
MARKET_CAP_DF=pd.DataFrame({'POSITION':MARKET_CAP_DICT.keys(),'NUMBER_OF_COMPANY':MARKET_CAP_DICT.values()})
MARKET_CAP_DF
POSITION | NUMBER_OF_COMPANY | |
---|---|---|
0 | LARGE_CAP | 13 |
1 | BLUE_CHIP | 2 |
2 | MID_CAP | 11 |
3 | SMALL_CAP | 24 |
plt.figure(figsize=(10,5),dpi=150)
plt.xticks(rotation=45)
plt.title('Number of Companies According To Market Capitalization',size=15)
sns.barplot(data=MARKET_CAP_DF, x='POSITION', y='NUMBER_OF_COMPANY', palette='twilight_r')
plt.xlabel('Capitalization',size=15)
plt.ylabel('Number Of Companies',size=15)
Text(0, 0.5, 'Number Of Companies')
MARKET_CAP_DICT={'SMALL_CAP':len(df[(df['MARKET_CAP(in Cr.)']<50000)]),\
'MID_CAP':len(df[(df['MARKET_CAP(in Cr.)']>50000)&(df['MARKET_CAP(in Cr.)']<100000)]),\
'LARGE_CAP':len(df[(df['MARKET_CAP(in Cr.)']>100000) & (df['MARKET_CAP(in Cr.)']<1000000)]),\
"BLUE_CHIP":len(df[(df['MARKET_CAP(in Cr.)']>1000000)])}
MARKET_CAP_DF=pd.DataFrame({'POSITION':MARKET_CAP_DICT.keys(),'NUMBER_OF_COMPANY':MARKET_CAP_DICT.values()})
MARKET_CAP_DF
POSITION | NUMBER_OF_COMPANY | |
---|---|---|
0 | SMALL_CAP | 24 |
1 | MID_CAP | 11 |
2 | LARGE_CAP | 13 |
3 | BLUE_CHIP | 2 |
df_sectors=df[['COMPANY','SECTOR','MARKET_CAP(in Cr.)']].copy()
market_cap=df['MARKET_CAP(in Cr.)']
names=[]
for i in market_cap:
if i<50000:
a='SMALL_CAP'
names.append(a)
elif i>50000 and i<100000:
b='MID_CAP'
names.append(b)
elif i>100000 and i<1000000:
c='LARGE_CAP'
names.append(c)
elif i>1000000:
d='BLUE_CHIP'
names.append(d)
df_sectors["POSITION_"]=names
df_sectors
COMPANY | SECTOR | MARKET_CAP(in Cr.) | POSITION_ | |
---|---|---|---|---|
0 | Bajaj Finance Ltd | Finance | 422293 | LARGE_CAP |
1 | Avenue Supermarts Ltd | Retail | 268104 | LARGE_CAP |
2 | Reliance Industries Ltd | Refineries | 1740392 | BLUE_CHIP |
3 | Asian Paints Ltd | Paints/Varnish | 292090 | LARGE_CAP |
4 | Berger Paints India Ltd | Paints/Varnish | 56644 | MID_CAP |
5 | Tata Motors Ltd | Automobile | 148207 | LARGE_CAP |
6 | Tata Consultancy Services Ltd | IT - Software | 1172964 | BLUE_CHIP |
7 | Pidilite Industries Ltd | Chemicals | 135022 | LARGE_CAP |
8 | TVS Motor Company Ltd | Automobile | 52544 | MID_CAP |
9 | Rallis India Ltd | Agro Chemicals | 4385 | SMALL_CAP |
10 | Nestle India Ltd | FMCG | 194522 | LARGE_CAP |
11 | SBI Cards & Payment Services Ltd | Finance | 76228 | MID_CAP |
12 | HDFC Bank Ltd | Banks | 849930 | LARGE_CAP |
13 | Balkrishna Industries Ltd | Tyres | 36364 | SMALL_CAP |
14 | Bharti Airtel Ltd | Telecomm-Service | 476676 | LARGE_CAP |
15 | V-Mart Retail Ltd | Retail | 5594 | SMALL_CAP |
16 | Cipla Ltd | Pharmaceuticals | 90575 | MID_CAP |
17 | Shalimar Paints Ltd | Paints/Varnish | 1121 | SMALL_CAP |
18 | Apollo Hospitals Enterprise Ltd | Healthcare | 61618 | MID_CAP |
19 | AU Small Finance Bank Ltd | Banks | 41871 | SMALL_CAP |
20 | Larsen & Toubro Infotech Ltd | IT - Software | 85278 | MID_CAP |
21 | Deepak Nitrite Ltd | Chemicals | 28361 | SMALL_CAP |
22 | Aarti Industries Ltd | Chemicals | 25673 | SMALL_CAP |
23 | Maruti Suzuki India Ltd | Automobile | 274810 | LARGE_CAP |
24 | P I Industries Ltd | Agro Chemicals | 53018 | MID_CAP |
25 | Hindustan Unilever Ltd | FMCG | 590593 | LARGE_CAP |
26 | Muthoot Finance Ltd | Finance | 44377 | SMALL_CAP |
27 | MRF Ltd | Tyres | 37087 | SMALL_CAP |
28 | CEAT Ltd | Tyres | 6966 | SMALL_CAP |
29 | Tata Communications Ltd | Telecomm-Service | 37453 | SMALL_CAP |
30 | Vodafone Idea Ltd | Telecomm-Service | 27783 | SMALL_CAP |
31 | Trent Ltd | Retail | 52289 | MID_CAP |
32 | Torrent Pharmaceuticals Ltd | Pharmaceuticals | 56339 | MID_CAP |
33 | Sun Pharmaceuticals Industries Ltd | Pharmaceuticals | 242489 | LARGE_CAP |
34 | Kansai Nerolac Paints Ltd | Paints/Varnish | 23896 | SMALL_CAP |
35 | Fortis Healthcare Ltd | Healthcare | 21094 | SMALL_CAP |
36 | State Bank of India | Banks | 540608 | LARGE_CAP |
37 | KPIT Technologies Ltd | IT - Software | 18200 | SMALL_CAP |
38 | Fine Organic Industries Ltd | Chemicals | 18207 | SMALL_CAP |
39 | Bajaj Auto Ltd | Automobile | 107778 | LARGE_CAP |
40 | Meghmani Organics Ltd | Agro Chemicals | 2941 | SMALL_CAP |
41 | Varun Beverages Ltd | FMCG | 73987 | MID_CAP |
42 | Power Finance Corporation Ltd | Finance | 30836 | SMALL_CAP |
43 | Goodyear India Ltd | Tyres | 2481 | SMALL_CAP |
44 | Mahanagar Telephone Nigam Ltd | Telecomm-Service | 1373 | SMALL_CAP |
45 | Medplus Health Services Ltd | Retail | 6904 | SMALL_CAP |
46 | Abbott India Ltd | Pharmaceuticals | 40883 | SMALL_CAP |
47 | Dr Lal Pathlabs Ltd | Healthcare | 19670 | SMALL_CAP |
48 | Mindtree Ltd | IT - Software | 57401 | MID_CAP |
49 | Subex Ltd | IT - Software | 1725 | SMALL_CAP |
plt.figure(figsize=(10,5),dpi=150)
plt.xticks(rotation=45)
plt.title(' Companies According To market Capitalization',size=20)
sns.barplot(data=df_sectors, x='POSITION_', y='MARKET_CAP(in Cr.)',hue='COMPANY', palette='Dark2' )
plt.xlabel('Sectors',size=20)
plt.ylabel('Market Capitalization',size=20)
plt.legend(loc=(1.05,-1.7))
<matplotlib.legend.Legend at 0x221cee458e0>
Details of those companies which have negative earnings which show that the companies are in loss
loss_companies=df[df['EPS']<0]
loss_companies
COMPANY | NSE_CODE | BSE_CODE | SECTOR | MARKET_CAP(in Cr.) | CURRENT_PRICE | DOWN_FROM_52w_HIGH(in %) | UP_FROM_52w_LOW(in %) | DEBT(in Cr.) | DIV_YIELD(in %) | BOOK_VALUE | PROMOTER_HOLDING(in %) | HOLDING_PLEDGED(in %) | SALES(in %) | SALES_GROWTH_5yrs(in %) | PROFIT(in %) | PROFIT_GROWTH_5yrs(in %) | ROCE(in %) | ROCE_5yr_AVG(in %) | ROE(in %) | ROE_5yr_AVG(in %) | PE_RATIO | PE_RATIO_5yr_AVG | CAGR_5yr(in %) | CAGR_10yr(in %) | EPS | ASSET_TURNOVER | QUICK_RATIO | DEBT_EQUITY_RATIO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | Tata Motors Ltd | TATAMOTORS | 500570 | Automobile | 148207 | 412.00 | 23.2 | 12.6 | 144354.0 | 0.0 | 78.8 | 46.4 | 1.82 | 3.47 | 0.64 | -30209.00 | 0.00 | 1.40 | 3.44 | -22.3 | -5.2 | 0.0 | -2.12 | -0.49 | 4.15 | -25.6 | 0.83 | 0.68 | 5.52 |
17 | Shalimar Paints Ltd | SHALPAINTS | 509874 | Paints/Varnish | 1121 | 155.00 | 15.8 | 64.0 | 145.0 | 0.0 | 51.5 | 39.9 | 0.00 | 16.30 | 0.47 | 17.90 | 0.00 | -7.19 | -9.53 | -18.0 | -21.4 | 0.0 | -10.70 | 0.54 | 5.17 | -9.0 | 0.61 | 1.36 | 0.39 |
30 | Vodafone Idea Ltd | IDEA | 532822 | Telecomm-Service | 27783 | 8.65 | 48.5 | 11.6 | 248176.0 | 0.0 | -23.8 | 75.0 | 0.00 | 4.92 | 1.60 | -6.46 | 0.00 | 0.00 | 0.00 | 0.0 | 0.0 | 0.0 | -0.60 | -31.80 | -17.00 | -9.2 | 0.19 | 0.24 | 0.00 |
44 | Mahanagar Telephone Nigam Ltd | MTNL | 500108 | Telecomm-Service | 1373 | 21.80 | 46.6 | 30.9 | 26820.0 | 0.0 | -296.0 | 56.9 | 0.00 | -16.80 | -17.30 | -2.26 | 2.17 | -5.08 | -11.30 | 0.0 | 0.0 | 0.0 | -0.48 | -0.89 | -2.19 | -40.8 | 0.09 | 0.43 | 0.00 |
Getting the number of loss making companies according to sector.
high_loss_sector=loss_companies[['SECTOR','COMPANY']].groupby('SECTOR').count().reset_index()
high_loss_sector
SECTOR | COMPANY | |
---|---|---|
0 | Automobile | 1 |
1 | Paints/Varnish | 1 |
2 | Telecomm-Service | 2 |
plt.figure(figsize=(10,6), dpi=150)
plt.xticks(rotation=45)
plt.title('Number Of Loss Making Companies',size=20)
sns.barplot(data=high_loss_sector, x='SECTOR', y='COMPANY',palette='twilight')
plt.xlabel('Sectors',size=20)
plt.ylabel('Number of Companies',size=20)
Text(0, 0.5, 'Number of Companies')
profit_companies=df[df['EPS']>0]
profit_companies
COMPANY | NSE_CODE | BSE_CODE | SECTOR | MARKET_CAP(in Cr.) | CURRENT_PRICE | DOWN_FROM_52w_HIGH(in %) | UP_FROM_52w_LOW(in %) | DEBT(in Cr.) | DIV_YIELD(in %) | BOOK_VALUE | PROMOTER_HOLDING(in %) | HOLDING_PLEDGED(in %) | SALES(in %) | SALES_GROWTH_5yrs(in %) | PROFIT(in %) | PROFIT_GROWTH_5yrs(in %) | ROCE(in %) | ROCE_5yr_AVG(in %) | ROE(in %) | ROE_5yr_AVG(in %) | PE_RATIO | PE_RATIO_5yr_AVG | CAGR_5yr(in %) | CAGR_10yr(in %) | EPS | ASSET_TURNOVER | QUICK_RATIO | DEBT_EQUITY_RATIO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Bajaj Finance Ltd | BAJFINANCE | 500034 | Finance | 422293 | 6975.0 | 13.30 | 33.60 | 183273.0 | 0.29 | 794.0 | 55.9 | 0.00 | 30.10 | 26.00 | 99.40 | 30.90 | 10.30 | 11.00 | 17.50 | 17.70 | 42.60 | 40.70 | 31.90 | 48.50 | 164.00 | 0.16 | 1.26 | 3.81 |
1 | Avenue Supermarts Ltd | DMART | 540376 | Retail | 268104 | 4139.0 | 20.10 | 29.90 | 711.0 | 0.00 | 232.0 | 75.0 | 0.00 | 38.50 | 21.10 | 68.00 | 25.80 | 15.80 | 18.00 | 11.50 | 13.20 | 116.00 | 103.00 | 29.00 | 0.00 | 35.60 | 2.13 | 1.19 | 0.05 |
2 | Reliance Industries Ltd | RELIANCE | 500325 | Refineries | 1740392 | 2572.0 | 9.93 | 18.00 | 316030.0 | 0.31 | 1168.0 | 50.6 | 0.00 | 46.40 | 18.10 | 24.20 | 14.40 | 9.42 | 10.00 | 8.16 | 9.59 | 27.10 | 17.90 | 24.10 | 20.70 | 98.10 | 0.50 | 0.63 | 0.40 |
3 | Asian Paints Ltd | ASIANPAINT | 500820 | Paints/Varnish | 292090 | 3045.0 | 15.20 | 19.00 | 1866.0 | 0.63 | 147.0 | 52.6 | 10.60 | 28.20 | 14.10 | 15.60 | 9.71 | 29.70 | 33.60 | 23.20 | 25.40 | 77.60 | 59.10 | 20.90 | 22.20 | 38.20 | 1.34 | 1.04 | 0.13 |
4 | Berger Paints India Ltd | BERGEPAINT | 509480 | Paints/Varnish | 56644 | 583.0 | 28.30 | 7.28 | 1634.0 | 0.53 | 42.2 | 75.0 | 0.00 | 24.50 | 14.00 | 12.20 | 14.10 | 25.90 | 27.20 | 22.50 | 22.90 | 59.90 | 63.60 | 18.30 | 27.70 | 9.74 | 1.33 | 0.58 | 0.40 |
6 | Tata Consultancy Services Ltd | TCS | 532540 | IT - Software | 1172964 | 3206.0 | 20.80 | 9.56 | 7460.0 | 1.34 | 266.0 | 72.3 | 0.48 | 16.60 | 10.20 | 8.27 | 7.83 | 54.90 | 47.80 | 43.60 | 37.20 | 29.60 | 21.20 | 18.80 | 17.10 | 108.00 | 1.42 | 2.84 | 0.08 |
7 | Pidilite Industries Ltd | PIDILITIND | 500331 | Chemicals | 135022 | 2656.0 | 9.00 | 33.60 | 680.0 | 0.38 | 130.0 | 69.9 | 0.00 | 26.10 | 12.00 | -3.28 | 7.10 | 26.10 | 31.70 | 20.20 | 23.80 | 104.00 | 61.70 | 26.50 | 29.00 | 25.60 | 1.08 | 0.92 | 0.10 |
8 | TVS Motor Company Ltd | TVSMOTOR | 532343 | Automobile | 52544 | 1106.0 | 6.04 | 116.00 | 18675.0 | 0.34 | 107.0 | 50.8 | 0.00 | 24.20 | 14.30 | 41.50 | 8.13 | 11.30 | 13.20 | 18.40 | 20.80 | 44.40 | 39.30 | 9.31 | 39.50 | 25.60 | 1.00 | 0.89 | 3.68 |
9 | Rallis India Ltd | RALLIS | 500355 | Agro Chemicals | 4385 | 226.0 | 24.60 | 23.60 | 175.0 | 1.33 | 91.2 | 50.1 | 0.00 | 17.50 | 13.40 | -12.60 | 2.40 | 13.60 | 16.60 | 10.20 | 12.60 | 26.80 | 20.70 | 0.03 | 3.58 | 8.43 | 0.96 | 0.86 | 0.10 |
10 | Nestle India Ltd | NESTLEIND | 500790 | FMCG | 194522 | 20175.0 | 4.17 | 26.10 | 280.0 | 0.99 | 241.0 | 62.8 | 0.00 | 13.50 | 9.98 | 4.63 | 18.10 | 147.00 | 95.10 | 113.00 | 67.10 | 82.90 | 66.50 | 21.00 | 15.50 | 225.00 | 1.83 | 0.51 | 0.12 |
11 | SBI Cards & Payment Services Ltd | SBICARD | 543066 | Finance | 76228 | 807.0 | 26.30 | 23.00 | 28186.0 | 0.31 | 94.6 | 69.4 | 0.00 | 25.60 | 26.10 | 105.00 | 34.10 | 11.60 | 12.80 | 23.00 | 24.00 | 36.00 | 49.70 | 0.00 | 0.00 | 22.50 | 0.35 | 0.41 | 3.16 |
12 | HDFC Bank Ltd | HDFCBANK | 500180 | Banks | 849930 | 1525.0 | 11.50 | 19.90 | 1784970.0 | 1.02 | 446.0 | 25.6 | 0.00 | 13.90 | 13.20 | 22.00 | 20.00 | 5.83 | 6.77 | 16.60 | 16.80 | 20.40 | 24.20 | 10.80 | 16.80 | 75.20 | 0.07 | 2.66 | 7.22 |
13 | Balkrishna Industries Ltd | BALKRISIND | 502355 | Tyres | 36364 | 1881.0 | 25.90 | 11.80 | 2529.0 | 0.85 | 359.0 | 58.3 | 0.00 | 37.20 | 17.40 | 2.56 | 17.00 | 23.80 | 22.00 | 21.90 | 19.50 | 25.80 | 24.90 | 14.30 | 29.90 | 73.00 | 0.87 | 0.48 | 0.36 |
14 | Bharti Airtel Ltd | BHARTIARTL | 532454 | Telecomm-Service | 476676 | 826.0 | 1.87 | 31.30 | 217989.0 | 0.36 | 131.0 | 55.1 | 0.00 | 19.80 | 4.07 | 125.00 | -3.36 | 12.00 | 8.30 | 5.86 | 2.13 | 76.70 | 36.80 | 12.70 | 12.50 | 11.40 | 0.33 | 0.45 | 2.99 |
15 | V-Mart Retail Ltd | VMART | 534976 | Retail | 5594 | 2830.0 | 41.60 | 17.60 | 902.0 | 0.03 | 430.0 | 46.1 | 0.00 | 76.80 | 10.70 | 4888.00 | -22.40 | 5.21 | 11.40 | 1.46 | 7.58 | 92.00 | 44.20 | 15.00 | 0.00 | 30.80 | 0.89 | 0.28 | 1.06 |
16 | Cipla Ltd | CIPLA | 500087 | Pharmaceuticals | 90575 | 1122.0 | 5.31 | 32.00 | 1068.0 | 0.45 | 271.0 | 33.6 | 0.00 | 5.50 | 8.62 | -2.62 | 23.10 | 17.50 | 13.60 | 13.20 | 11.30 | 34.90 | 27.90 | 13.00 | 11.00 | 31.80 | 0.84 | 1.97 | 0.05 |
18 | Apollo Hospitals Enterprise Ltd | APOLLOHOSP | 508869 | Healthcare | 61618 | 4285.0 | 27.80 | 27.50 | 3998.0 | 0.27 | 417.0 | 29.3 | 16.40 | 16.20 | 15.10 | 7.82 | 44.80 | 17.80 | 11.80 | 16.60 | 7.94 | 73.40 | 72.40 | 33.80 | 18.00 | 58.40 | 1.19 | 1.32 | 0.67 |
19 | AU Small Finance Bank Ltd | AUBANK | 540611 | Banks | 41871 | 628.0 | 14.30 | 35.90 | 58575.0 | 0.08 | 119.0 | 25.6 | 0.00 | 31.30 | 35.80 | 11.40 | 6.58 | 7.19 | 8.47 | 16.60 | 17.90 | 33.30 | 34.70 | 15.80 | 0.00 | 19.70 | 0.10 | 2.31 | 7.84 |
20 | Larsen & Toubro Infotech Ltd | LTI | 540005 | IT - Software | 85278 | 4862.0 | 36.00 | 30.20 | 824.0 | 0.93 | 524.0 | 74.0 | 0.00 | 30.40 | 19.20 | 21.30 | 19.20 | 35.70 | 38.60 | 28.50 | 30.50 | 33.30 | 19.50 | 38.80 | 0.00 | 146.00 | 1.35 | 3.09 | 0.09 |
21 | Deepak Nitrite Ltd | DEEPAKNTR | 506401 | Chemicals | 28361 | 2079.0 | 22.70 | 23.70 | 270.0 | 0.34 | 268.0 | 45.7 | 0.00 | 28.90 | 37.80 | -13.60 | 87.00 | 44.50 | 32.80 | 37.40 | 34.20 | 30.90 | 21.50 | 57.00 | 57.00 | 67.40 | 1.70 | 2.26 | 0.07 |
22 | Aarti Industries Ltd | AARTIIND | 524208 | Chemicals | 25673 | 708.0 | 30.30 | 16.60 | 2594.0 | 0.49 | 163.0 | 44.2 | 0.00 | 56.70 | 17.20 | 120.00 | 32.90 | 22.10 | 17.60 | 27.80 | 22.20 | 19.30 | 26.50 | 29.10 | 42.40 | 36.70 | 0.81 | 0.80 | 0.44 |
23 | Maruti Suzuki India Ltd | MARUTI | 532500 | Automobile | 274810 | 9097.0 | 6.88 | 39.20 | 625.0 | 0.66 | 1893.0 | 56.4 | 0.00 | 24.00 | 5.34 | 44.40 | -7.94 | 8.95 | 13.60 | 7.25 | 10.20 | 45.30 | 26.30 | 2.14 | 20.10 | 201.00 | 1.21 | 0.80 | 0.01 |
24 | P I Industries Ltd | PIIND | 523642 | Agro Chemicals | 53018 | 3494.0 | 5.52 | 49.80 | 280.0 | 0.17 | 436.0 | 46.1 | 0.00 | 23.60 | 18.40 | 29.30 | 12.90 | 17.30 | 21.20 | 14.70 | 17.50 | 51.80 | 34.70 | 33.20 | 41.90 | 67.50 | 0.72 | 2.53 | 0.04 |
25 | Hindustan Unilever Ltd | HINDUNILVR | 500696 | FMCG | 590593 | 2514.0 | 8.06 | 32.20 | 1139.0 | 1.35 | 211.0 | 61.9 | 0.00 | 14.30 | 9.60 | 14.70 | 15.60 | 24.30 | 48.30 | 18.40 | 35.80 | 61.00 | 55.20 | 14.30 | 16.90 | 41.10 | 0.75 | 0.99 | 0.02 |
26 | Muthoot Finance Ltd | MUTHOOTFIN | 533398 | Finance | 44377 | 1105.0 | 35.80 | 16.40 | 46770.0 | 1.81 | 479.0 | 73.4 | 0.00 | -5.33 | 14.00 | -7.43 | 27.40 | 14.20 | 15.60 | 23.60 | 25.40 | 12.10 | 12.50 | 18.00 | 17.20 | 91.20 | 0.17 | 3.29 | 2.43 |
27 | MRF Ltd | MRF | 500290 | Tyres | 37087 | 87469.0 | 8.89 | 39.00 | 3118.0 | 0.17 | 33566.0 | 27.9 | 0.00 | 17.20 | 7.57 | -53.00 | -14.90 | 7.05 | 12.60 | 4.85 | 9.76 | 65.30 | 21.80 | 5.36 | 24.00 | 1339.00 | 0.85 | 0.78 | 0.22 |
28 | CEAT Ltd | CEATLTD | 500878 | Tyres | 6966 | 1722.0 | 3.68 | 93.50 | 2393.0 | 0.17 | 809.0 | 47.2 | 0.00 | 20.80 | 10.20 | -89.30 | -25.50 | 6.35 | 11.60 | 2.59 | 9.28 | 182.00 | 14.80 | -0.14 | 32.10 | 5.52 | 1.08 | 0.36 | 0.73 |
29 | Tata Communications Ltd | TATACOMM | 500483 | Telecomm-Service | 37453 | 1314.0 | 17.40 | 53.50 | 8840.0 | 1.58 | 31.8 | 58.9 | 4.96 | 3.72 | -1.04 | 34.20 | -6.74 | 21.80 | 13.20 | 282.00 | 0.00 | 21.10 | 16.70 | 24.60 | 24.40 | 64.40 | 0.82 | 0.61 | 9.74 |
31 | Trent Ltd | TRENT | 500251 | Retail | 52289 | 1471.0 | 6.37 | 51.60 | 4526.0 | 0.12 | 67.0 | 37.0 | 0.00 | 92.00 | 19.90 | 550.00 | -14.40 | 9.29 | 9.60 | 1.60 | 1.76 | 176.00 | 124.00 | 36.40 | 29.00 | 10.20 | 0.67 | 0.79 | 1.90 |
32 | Torrent Pharmaceuticals Ltd | TORNTPHARM | 500420 | Pharmaceuticals | 56339 | 1665.0 | 4.88 | 34.00 | 4083.0 | 0.24 | 180.0 | 71.2 | 0.00 | 8.19 | 7.91 | -5.29 | 4.12 | 18.90 | 15.50 | 18.30 | 18.10 | 47.00 | 32.60 | 22.10 | 25.80 | 23.60 | 0.63 | 0.73 | 0.67 |
33 | Sun Pharmaceuticals Industries Ltd | SUNPHARMA | 524715 | Pharmaceuticals | 242489 | 1011.0 | 5.63 | 37.80 | 4366.0 | 0.99 | 221.0 | 54.5 | 4.04 | 11.80 | 4.13 | 9.17 | -0.99 | 18.40 | 12.90 | 14.00 | 10.20 | 30.60 | 43.10 | 13.90 | 11.40 | 17.10 | 0.56 | 1.74 | 0.08 |
34 | Kansai Nerolac Paints Ltd | KANSAINER | 500165 | Paints/Varnish | 23896 | 443.0 | 29.60 | 23.80 | 314.0 | 0.51 | 80.9 | 75.0 | 0.00 | 20.70 | 9.46 | -22.50 | -6.75 | 11.40 | 18.10 | 8.12 | 12.80 | 58.60 | 53.00 | -2.48 | 15.70 | 7.84 | 1.13 | 1.24 | 0.07 |
35 | Fortis Healthcare Ltd | FORTIS | 532843 | Healthcare | 21094 | 279.0 | 14.00 | 27.10 | 1255.0 | 0.00 | 81.8 | 31.2 | 0.00 | 19.90 | 4.57 | 120.00 | -2.33 | 10.80 | 5.50 | 6.12 | 0.31 | 51.60 | 22.20 | 15.80 | 10.50 | 5.48 | 0.51 | 0.80 | 0.20 |
36 | State Bank of India | SBIN | 500112 | Banks | 540608 | 606.0 | 2.75 | 42.50 | 4536570.0 | 1.17 | 342.0 | 57.5 | 0.00 | 10.40 | 4.70 | 21.70 | 160.00 | 4.44 | 4.56 | 12.20 | 5.81 | 13.10 | 12.40 | 12.70 | 10.80 | 46.10 | 0.06 | 3.06 | 14.80 |
37 | KPIT Technologies Ltd | KPITTECH | 542651 | IT - Software | 18200 | 664.0 | 17.10 | 69.70 | 186.0 | 0.47 | 50.8 | 40.1 | 0.82 | 22.10 | 0.00 | 46.60 | 0.00 | 24.10 | 0.00 | 21.50 | 0.00 | 57.30 | 32.70 | 0.00 | 0.00 | 11.60 | 1.13 | 2.02 | 0.13 |
38 | Fine Organic Industries Ltd | FINEORG | 541557 | Chemicals | 18207 | 5938.0 | 19.00 | 81.60 | 45.0 | 0.15 | 420.0 | 75.0 | 0.00 | 93.70 | 19.20 | 267.00 | 27.20 | 38.80 | 34.10 | 30.70 | 26.80 | 34.00 | 35.50 | 0.00 | 0.00 | 175.00 | 1.72 | 2.61 | 0.03 |
39 | Bajaj Auto Ltd | BAJAJ-AUTO | 532977 | Automobile | 107778 | 3725.0 | 9.85 | 23.00 | 124.0 | 3.76 | 900.0 | 54.8 | 0.01 | 4.61 | 8.79 | -7.75 | 5.87 | 23.40 | 27.50 | 19.00 | 20.90 | 19.30 | 17.10 | 2.74 | 7.29 | 202.00 | 0.96 | 1.58 | 0.00 |
40 | Meghmani Organics Ltd | MOL | 543331 | Agro Chemicals | 2941 | 116.0 | 24.20 | 43.20 | 665.0 | 1.21 | 63.1 | 49.4 | 0.00 | 47.20 | 0.00 | 59.70 | 0.00 | 24.10 | 0.00 | 22.60 | 0.00 | 8.51 | 8.71 | 0.00 | 0.00 | 13.60 | 1.05 | 0.71 | 0.41 |
41 | Varun Beverages Ltd | VBL | 540180 | FMCG | 73987 | 1139.0 | 7.62 | 109.00 | 2371.0 | 0.22 | 74.1 | 63.9 | 0.04 | 50.80 | 18.00 | 115.00 | 72.10 | 17.40 | 14.60 | 18.60 | 15.30 | 51.40 | 55.40 | 50.30 | 0.00 | 22.20 | 0.98 | 0.34 | 0.49 |
42 | Power Finance Corporation Ltd | PFC | 532810 | Finance | 30836 | 117.0 | 17.90 | 20.30 | 674847.0 | 10.30 | 290.0 | 56.0 | 0.00 | 1.44 | 22.60 | 8.39 | 44.40 | 9.38 | 9.66 | 21.20 | 19.70 | 2.18 | 3.28 | -1.61 | 2.15 | 53.60 | 0.10 | 1.51 | 8.82 |
43 | Goodyear India Ltd | GOODYEAR | 500168 | Tyres | 2481 | 1075.0 | 10.80 | 37.30 | 16.7 | 1.86 | 310.0 | 74.0 | 0.00 | 29.60 | 10.00 | -32.20 | -4.15 | 18.00 | 19.50 | 13.20 | 13.50 | 21.80 | 15.70 | 6.03 | 12.90 | 49.30 | 1.77 | 1.08 | 0.02 |
45 | Medplus Health Services Ltd | MEDPLUS | 543427 | Retail | 6904 | 579.0 | 56.90 | 1.52 | 815.0 | 0.00 | 119.0 | 40.4 | 50.50 | 23.10 | 13.40 | 49.40 | 25.70 | 11.40 | 12.00 | 10.40 | 9.25 | 134.00 | 126.00 | 0.00 | 0.00 | 9.00 | 1.82 | 1.28 | 0.57 |
46 | Abbott India Ltd | ABBOTINDIA | 500488 | Pharmaceuticals | 40883 | 19239.0 | 7.95 | 24.00 | 152.0 | 0.75 | 1327.0 | 75.0 | 0.00 | 12.20 | 11.10 | 14.50 | 23.60 | 38.40 | 37.10 | 29.50 | 27.00 | 50.60 | 35.70 | 33.60 | 29.40 | 381.00 | 1.22 | 2.63 | 0.05 |
47 | Dr Lal Pathlabs Ltd | LALPATHLAB | 539524 | Healthcare | 19670 | 2360.0 | 40.20 | 30.70 | 285.0 | 0.51 | 186.0 | 55.0 | 0.00 | 1.53 | 18.00 | -38.60 | 17.40 | 29.40 | 32.40 | 25.10 | 24.00 | 79.30 | 51.70 | 22.60 | 0.00 | 29.80 | 1.04 | 1.73 | 0.18 |
48 | Mindtree Ltd | MINDTREE | 532819 | IT - Software | 57401 | 3480.0 | 31.20 | 31.40 | 613.0 | 1.06 | 344.0 | 61.0 | 0.00 | 35.00 | 15.00 | 36.40 | 31.60 | 41.50 | 33.40 | 33.80 | 26.90 | 30.40 | 21.60 | 47.80 | 35.00 | 115.00 | 1.45 | 2.96 | 0.11 |
49 | Subex Ltd | SUBEXLTD | 532348 | IT - Software | 1725 | 30.6 | 50.10 | 64.50 | 14.7 | 0.00 | 10.1 | 0.0 | 0.00 | -7.65 | -1.37 | -73.20 | -19.90 | 6.18 | 8.34 | 3.68 | 5.34 | 132.00 | 20.80 | 28.30 | 7.80 | 0.23 | 0.46 | 3.75 | 0.03 |
high_profit_sector=profit_companies[['SECTOR','COMPANY']].groupby('SECTOR').count().reset_index()
high_profit_sector
SECTOR | COMPANY | |
---|---|---|
0 | Agro Chemicals | 3 |
1 | Automobile | 3 |
2 | Banks | 3 |
3 | Chemicals | 4 |
4 | FMCG | 3 |
5 | Finance | 4 |
6 | Healthcare | 3 |
7 | IT - Software | 5 |
8 | Paints/Varnish | 3 |
9 | Pharmaceuticals | 4 |
10 | Refineries | 1 |
11 | Retail | 4 |
12 | Telecomm-Service | 2 |
13 | Tyres | 4 |
plt.figure(figsize=(10,5), dpi=150)
plt.xticks(rotation=60)
plt.title('Number Of profit Making Companies',size=20)
sns.barplot(data=high_profit_sector, x='SECTOR', y='COMPANY',palette='vlag_r')
plt.xlabel('Sectors',size=20)
plt.ylabel('Number Of Companies',size=20)
Text(0, 0.5, 'Number Of Companies')
Tele_sector=df[df['SECTOR']=='Telecomm-Service']
Tele_sector
COMPANY | NSE_CODE | BSE_CODE | SECTOR | MARKET_CAP(in Cr.) | CURRENT_PRICE | DOWN_FROM_52w_HIGH(in %) | UP_FROM_52w_LOW(in %) | DEBT(in Cr.) | DIV_YIELD(in %) | BOOK_VALUE | PROMOTER_HOLDING(in %) | HOLDING_PLEDGED(in %) | SALES(in %) | SALES_GROWTH_5yrs(in %) | PROFIT(in %) | PROFIT_GROWTH_5yrs(in %) | ROCE(in %) | ROCE_5yr_AVG(in %) | ROE(in %) | ROE_5yr_AVG(in %) | PE_RATIO | PE_RATIO_5yr_AVG | CAGR_5yr(in %) | CAGR_10yr(in %) | EPS | ASSET_TURNOVER | QUICK_RATIO | DEBT_EQUITY_RATIO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14 | Bharti Airtel Ltd | BHARTIARTL | 532454 | Telecomm-Service | 476676 | 826.00 | 1.87 | 31.3 | 217989.0 | 0.36 | 131.0 | 55.1 | 0.00 | 19.80 | 4.07 | 125.00 | -3.36 | 12.00 | 8.3 | 5.86 | 2.13 | 76.7 | 36.80 | 12.70 | 12.50 | 11.4 | 0.33 | 0.45 | 2.99 |
29 | Tata Communications Ltd | TATACOMM | 500483 | Telecomm-Service | 37453 | 1314.00 | 17.40 | 53.5 | 8840.0 | 1.58 | 31.8 | 58.9 | 4.96 | 3.72 | -1.04 | 34.20 | -6.74 | 21.80 | 13.2 | 282.00 | 0.00 | 21.1 | 16.70 | 24.60 | 24.40 | 64.4 | 0.82 | 0.61 | 9.74 |
30 | Vodafone Idea Ltd | IDEA | 532822 | Telecomm-Service | 27783 | 8.65 | 48.50 | 11.6 | 248176.0 | 0.00 | -23.8 | 75.0 | 0.00 | 4.92 | 1.60 | -6.46 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.0 | -0.60 | -31.80 | -17.00 | -9.2 | 0.19 | 0.24 | 0.00 |
44 | Mahanagar Telephone Nigam Ltd | MTNL | 500108 | Telecomm-Service | 1373 | 21.80 | 46.60 | 30.9 | 26820.0 | 0.00 | -296.0 | 56.9 | 0.00 | -16.80 | -17.30 | -2.26 | 2.17 | -5.08 | -11.3 | 0.00 | 0.00 | 0.0 | -0.48 | -0.89 | -2.19 | -40.8 | 0.09 | 0.43 | 0.00 |
Tele_sector[Tele_sector["MARKET_CAP(in Cr.)"]>Tele_sector["DEBT(in Cr.)"]]
COMPANY | NSE_CODE | BSE_CODE | SECTOR | MARKET_CAP(in Cr.) | CURRENT_PRICE | DOWN_FROM_52w_HIGH(in %) | UP_FROM_52w_LOW(in %) | DEBT(in Cr.) | DIV_YIELD(in %) | BOOK_VALUE | PROMOTER_HOLDING(in %) | HOLDING_PLEDGED(in %) | SALES(in %) | SALES_GROWTH_5yrs(in %) | PROFIT(in %) | PROFIT_GROWTH_5yrs(in %) | ROCE(in %) | ROCE_5yr_AVG(in %) | ROE(in %) | ROE_5yr_AVG(in %) | PE_RATIO | PE_RATIO_5yr_AVG | CAGR_5yr(in %) | CAGR_10yr(in %) | EPS | ASSET_TURNOVER | QUICK_RATIO | DEBT_EQUITY_RATIO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14 | Bharti Airtel Ltd | BHARTIARTL | 532454 | Telecomm-Service | 476676 | 826.0 | 1.87 | 31.3 | 217989.0 | 0.36 | 131.0 | 55.1 | 0.00 | 19.80 | 4.07 | 125.0 | -3.36 | 12.0 | 8.3 | 5.86 | 2.13 | 76.7 | 36.8 | 12.7 | 12.5 | 11.4 | 0.33 | 0.45 | 2.99 |
29 | Tata Communications Ltd | TATACOMM | 500483 | Telecomm-Service | 37453 | 1314.0 | 17.40 | 53.5 | 8840.0 | 1.58 | 31.8 | 58.9 | 4.96 | 3.72 | -1.04 | 34.2 | -6.74 | 21.8 | 13.2 | 282.00 | 0.00 | 21.1 | 16.7 | 24.6 | 24.4 | 64.4 | 0.82 | 0.61 | 9.74 |
Tele_sector.plot(x="COMPANY", y=["DEBT(in Cr.)","MARKET_CAP(in Cr.)"], kind="bar",figsize=(39,18),\
rot=0, title='Debt & Market_cap comparison',fontsize=25,colormap='RdYlGn' )
plt.xlabel('Company',size=40)
plt.ylabel('Value in Cr.',size=40)
plt.title('Number of profit Making Companies',size=40)
Text(0.5, 1.0, 'Number of profit Making Companies')
-So, in above analysis we can see 2 companies has debt more than there Market_Cap than we can avoid to invest in these companies
Tele_sector[(Tele_sector['CAGR_5yr(in %)']>20)& (Tele_sector['CAGR_10yr(in %)']>20)]
COMPANY | NSE_CODE | BSE_CODE | SECTOR | MARKET_CAP(in Cr.) | CURRENT_PRICE | DOWN_FROM_52w_HIGH(in %) | UP_FROM_52w_LOW(in %) | DEBT(in Cr.) | DIV_YIELD(in %) | BOOK_VALUE | PROMOTER_HOLDING(in %) | HOLDING_PLEDGED(in %) | SALES(in %) | SALES_GROWTH_5yrs(in %) | PROFIT(in %) | PROFIT_GROWTH_5yrs(in %) | ROCE(in %) | ROCE_5yr_AVG(in %) | ROE(in %) | ROE_5yr_AVG(in %) | PE_RATIO | PE_RATIO_5yr_AVG | CAGR_5yr(in %) | CAGR_10yr(in %) | EPS | ASSET_TURNOVER | QUICK_RATIO | DEBT_EQUITY_RATIO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29 | Tata Communications Ltd | TATACOMM | 500483 | Telecomm-Service | 37453 | 1314.0 | 17.4 | 53.5 | 8840.0 | 1.58 | 31.8 | 58.9 | 4.96 | 3.72 | -1.04 | 34.2 | -6.74 | 21.8 | 13.2 | 282.0 | 0.0 | 21.1 | 16.7 | 24.6 | 24.4 | 64.4 | 0.82 | 0.61 | 9.74 |
The "IT-software" sector has highest profit making companies as per the Data set so will analyze this sector
IT_sector=df[df['SECTOR']=='IT - Software']
IT_sector
COMPANY | NSE_CODE | BSE_CODE | SECTOR | MARKET_CAP(in Cr.) | CURRENT_PRICE | DOWN_FROM_52w_HIGH(in %) | UP_FROM_52w_LOW(in %) | DEBT(in Cr.) | DIV_YIELD(in %) | BOOK_VALUE | PROMOTER_HOLDING(in %) | HOLDING_PLEDGED(in %) | SALES(in %) | SALES_GROWTH_5yrs(in %) | PROFIT(in %) | PROFIT_GROWTH_5yrs(in %) | ROCE(in %) | ROCE_5yr_AVG(in %) | ROE(in %) | ROE_5yr_AVG(in %) | PE_RATIO | PE_RATIO_5yr_AVG | CAGR_5yr(in %) | CAGR_10yr(in %) | EPS | ASSET_TURNOVER | QUICK_RATIO | DEBT_EQUITY_RATIO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6 | Tata Consultancy Services Ltd | TCS | 532540 | IT - Software | 1172964 | 3206.0 | 20.8 | 9.56 | 7460.0 | 1.34 | 266.0 | 72.3 | 0.48 | 16.60 | 10.20 | 8.27 | 7.83 | 54.90 | 47.80 | 43.60 | 37.20 | 29.6 | 21.2 | 18.8 | 17.1 | 108.00 | 1.42 | 2.84 | 0.08 |
20 | Larsen & Toubro Infotech Ltd | LTI | 540005 | IT - Software | 85278 | 4862.0 | 36.0 | 30.20 | 824.0 | 0.93 | 524.0 | 74.0 | 0.00 | 30.40 | 19.20 | 21.30 | 19.20 | 35.70 | 38.60 | 28.50 | 30.50 | 33.3 | 19.5 | 38.8 | 0.0 | 146.00 | 1.35 | 3.09 | 0.09 |
37 | KPIT Technologies Ltd | KPITTECH | 542651 | IT - Software | 18200 | 664.0 | 17.1 | 69.70 | 186.0 | 0.47 | 50.8 | 40.1 | 0.82 | 22.10 | 0.00 | 46.60 | 0.00 | 24.10 | 0.00 | 21.50 | 0.00 | 57.3 | 32.7 | 0.0 | 0.0 | 11.60 | 1.13 | 2.02 | 0.13 |
48 | Mindtree Ltd | MINDTREE | 532819 | IT - Software | 57401 | 3480.0 | 31.2 | 31.40 | 613.0 | 1.06 | 344.0 | 61.0 | 0.00 | 35.00 | 15.00 | 36.40 | 31.60 | 41.50 | 33.40 | 33.80 | 26.90 | 30.4 | 21.6 | 47.8 | 35.0 | 115.00 | 1.45 | 2.96 | 0.11 |
49 | Subex Ltd | SUBEXLTD | 532348 | IT - Software | 1725 | 30.6 | 50.1 | 64.50 | 14.7 | 0.00 | 10.1 | 0.0 | 0.00 | -7.65 | -1.37 | -73.20 | -19.90 | 6.18 | 8.34 | 3.68 | 5.34 | 132.0 | 20.8 | 28.3 | 7.8 | 0.23 | 0.46 | 3.75 | 0.03 |
IT_sector[IT_sector["MARKET_CAP(in Cr.)"]>IT_sector["DEBT(in Cr.)"]]
COMPANY | NSE_CODE | BSE_CODE | SECTOR | MARKET_CAP(in Cr.) | CURRENT_PRICE | DOWN_FROM_52w_HIGH(in %) | UP_FROM_52w_LOW(in %) | DEBT(in Cr.) | DIV_YIELD(in %) | BOOK_VALUE | PROMOTER_HOLDING(in %) | HOLDING_PLEDGED(in %) | SALES(in %) | SALES_GROWTH_5yrs(in %) | PROFIT(in %) | PROFIT_GROWTH_5yrs(in %) | ROCE(in %) | ROCE_5yr_AVG(in %) | ROE(in %) | ROE_5yr_AVG(in %) | PE_RATIO | PE_RATIO_5yr_AVG | CAGR_5yr(in %) | CAGR_10yr(in %) | EPS | ASSET_TURNOVER | QUICK_RATIO | DEBT_EQUITY_RATIO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6 | Tata Consultancy Services Ltd | TCS | 532540 | IT - Software | 1172964 | 3206.0 | 20.8 | 9.56 | 7460.0 | 1.34 | 266.0 | 72.3 | 0.48 | 16.60 | 10.20 | 8.27 | 7.83 | 54.90 | 47.80 | 43.60 | 37.20 | 29.6 | 21.2 | 18.8 | 17.1 | 108.00 | 1.42 | 2.84 | 0.08 |
20 | Larsen & Toubro Infotech Ltd | LTI | 540005 | IT - Software | 85278 | 4862.0 | 36.0 | 30.20 | 824.0 | 0.93 | 524.0 | 74.0 | 0.00 | 30.40 | 19.20 | 21.30 | 19.20 | 35.70 | 38.60 | 28.50 | 30.50 | 33.3 | 19.5 | 38.8 | 0.0 | 146.00 | 1.35 | 3.09 | 0.09 |
37 | KPIT Technologies Ltd | KPITTECH | 542651 | IT - Software | 18200 | 664.0 | 17.1 | 69.70 | 186.0 | 0.47 | 50.8 | 40.1 | 0.82 | 22.10 | 0.00 | 46.60 | 0.00 | 24.10 | 0.00 | 21.50 | 0.00 | 57.3 | 32.7 | 0.0 | 0.0 | 11.60 | 1.13 | 2.02 | 0.13 |
48 | Mindtree Ltd | MINDTREE | 532819 | IT - Software | 57401 | 3480.0 | 31.2 | 31.40 | 613.0 | 1.06 | 344.0 | 61.0 | 0.00 | 35.00 | 15.00 | 36.40 | 31.60 | 41.50 | 33.40 | 33.80 | 26.90 | 30.4 | 21.6 | 47.8 | 35.0 | 115.00 | 1.45 | 2.96 | 0.11 |
49 | Subex Ltd | SUBEXLTD | 532348 | IT - Software | 1725 | 30.6 | 50.1 | 64.50 | 14.7 | 0.00 | 10.1 | 0.0 | 0.00 | -7.65 | -1.37 | -73.20 | -19.90 | 6.18 | 8.34 | 3.68 | 5.34 | 132.0 | 20.8 | 28.3 | 7.8 | 0.23 | 0.46 | 3.75 | 0.03 |
IT_sector.plot(x="COMPANY", y=["DEBT(in Cr.)","MARKET_CAP(in Cr.)"], kind="bar", figsize=(39, 18),\
rot=0 , colormap='RdYlGn',fontsize=25 )
plt.xlabel('Company',size=40)
plt.ylabel('Value in Cr.',size=40)
plt.title('Debt & Market_cap comparison',size=40)
Text(0.5, 1.0, 'Debt & Market_cap comparison')
IT_sector[(IT_sector['CAGR_5yr(in %)']>20)& (IT_sector['CAGR_10yr(in %)']>20)]
COMPANY | NSE_CODE | BSE_CODE | SECTOR | MARKET_CAP(in Cr.) | CURRENT_PRICE | DOWN_FROM_52w_HIGH(in %) | UP_FROM_52w_LOW(in %) | DEBT(in Cr.) | DIV_YIELD(in %) | BOOK_VALUE | PROMOTER_HOLDING(in %) | HOLDING_PLEDGED(in %) | SALES(in %) | SALES_GROWTH_5yrs(in %) | PROFIT(in %) | PROFIT_GROWTH_5yrs(in %) | ROCE(in %) | ROCE_5yr_AVG(in %) | ROE(in %) | ROE_5yr_AVG(in %) | PE_RATIO | PE_RATIO_5yr_AVG | CAGR_5yr(in %) | CAGR_10yr(in %) | EPS | ASSET_TURNOVER | QUICK_RATIO | DEBT_EQUITY_RATIO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
48 | Mindtree Ltd | MINDTREE | 532819 | IT - Software | 57401 | 3480.0 | 31.2 | 31.4 | 613.0 | 1.06 | 344.0 | 61.0 | 0.0 | 35.0 | 15.0 | 36.4 | 31.6 | 41.5 | 33.4 | 33.8 | 26.9 | 30.4 | 21.6 | 47.8 | 35.0 | 115.0 | 1.45 | 2.96 | 0.11 |
As, we are getting Mindtree Ltd from "IT- Sector" as per our all criteria and from "Telecomm-Service" sector Tata Communications Ltd. So, will do a comparison in these both stocks.
selected_stocks = df[(df['NSE_CODE']=='MINDTREE') | (df['NSE_CODE']=='TATACOMM')]
selected_stocks
COMPANY | NSE_CODE | BSE_CODE | SECTOR | MARKET_CAP(in Cr.) | CURRENT_PRICE | DOWN_FROM_52w_HIGH(in %) | UP_FROM_52w_LOW(in %) | DEBT(in Cr.) | DIV_YIELD(in %) | BOOK_VALUE | PROMOTER_HOLDING(in %) | HOLDING_PLEDGED(in %) | SALES(in %) | SALES_GROWTH_5yrs(in %) | PROFIT(in %) | PROFIT_GROWTH_5yrs(in %) | ROCE(in %) | ROCE_5yr_AVG(in %) | ROE(in %) | ROE_5yr_AVG(in %) | PE_RATIO | PE_RATIO_5yr_AVG | CAGR_5yr(in %) | CAGR_10yr(in %) | EPS | ASSET_TURNOVER | QUICK_RATIO | DEBT_EQUITY_RATIO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29 | Tata Communications Ltd | TATACOMM | 500483 | Telecomm-Service | 37453 | 1314.0 | 17.4 | 53.5 | 8840.0 | 1.58 | 31.8 | 58.9 | 4.96 | 3.72 | -1.04 | 34.2 | -6.74 | 21.8 | 13.2 | 282.0 | 0.0 | 21.1 | 16.7 | 24.6 | 24.4 | 64.4 | 0.82 | 0.61 | 9.74 |
48 | Mindtree Ltd | MINDTREE | 532819 | IT - Software | 57401 | 3480.0 | 31.2 | 31.4 | 613.0 | 1.06 | 344.0 | 61.0 | 0.00 | 35.00 | 15.00 | 36.4 | 31.60 | 41.5 | 33.4 | 33.8 | 26.9 | 30.4 | 21.6 | 47.8 | 35.0 | 115.0 | 1.45 | 2.96 | 0.11 |
plt.figure(figsize=(10,5), dpi=150)
plt.xticks(rotation=0)
plt.title('Avg 5 Year Profit Growth',size=20)
chart_A=sns.barplot(data=selected_stocks, x='COMPANY', y='PROFIT_GROWTH_5yrs(in %)',palette='gist_earth')
plt.xlabel('Sectors',size=20)
plt.ylabel('Number of Companies',size=20)
Text(0, 0.5, 'Number of Companies')
plt.figure(figsize=(10,5), dpi=150)
plt.xticks(rotation=0)
plt.title('Quick Ratio',size=20)
chart_A=sns.barplot(data=selected_stocks, x='COMPANY', y='QUICK_RATIO',palette='cividis_r')
plt.xlabel('Company',size=20)
Text(0.5, 0, 'Company')
So, we can see that the Mind Tree Ltd. holds a great quick ratio(repayment of loans capability) which shows that we can keep a track on this company